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Optmatch is a unified suite of tools for matching in 
observational studies. RItools provides the basic tools 
for diagnostic checks and effect estimation in matching 
and randomization based analysis.

Case Study: The Effect of Deadlines on 
Drug Safety
The Prescription Drug User Fee Act (PDUFA) of 1992 
required the US Food and Drug Administration to act 
on 90% of “standard” drugs within 12 months.  This was 
the first time that time pressure became a part of the 
assessment of drug safety in the USA.  Our question is: 
Does Haste make Waste? Olson (2002,2004) says yes. 
Grabowski and Wang (2006) say no.
Seven drugs submitted and approved under the new 
regime were withdrawn for safety reasons (ex: the 
Cholesterol treatment Baycol caused potentially fatal 
muscle disorders; the Parkinson’s treatment, Tasmar, 
caused liver failure, others withdrawn include Duract, 
Famvir, Posicor, Prelay, and Rezulin).

Analytic Strategy
Strengthen Our Argument for Ignorability using 
Choice and Adjustment:

Choose drugs submitted in a small window of time 
around the discontinuity that occurred on Sep 1, 
1992 (± 4 years):  98 drugs pre-PDUFA, 121 drugs 
post-PDUFA.
Gently adjust using full matching (Hansen 2004) and 
a wide caliper on a propensity score (3 sd), which 
excludes 2 out of the 98 controls.
Test for balance using only assumptions about Z|X; 
Re-match if necessary.

Estimate Effects using Randomization Inference:
Specify a variety of hypotheses about the attributable 
effect (Rosenbaum, 2001).
Test these hypotheses.
The set of hypotheses accepted at some α is a 100(1-
α) CI.

A Randomization Based Test for Balance 
using RItools.
Well known randomization tests like those proposed by 
Fisher or Mantel and Haenszel represent null 
hypotheses with test statistics that are all members of 
the class of sum statistics t(Z,r); 

where Z records treatment assignment, r represents 
response or outcome, and q is some function of r (see 
Rosenbaum 2002, Chapter 2). 
Sum statistics have well known normal approximations, 
allowing us to test hypotheses and produce confidence 
intervals quickly.  Since the exact tests are available 
either via analytic development (e.g. mantelhaen.test) 
or simulation or sampling, we can always check the 

Motivation:

Implement and Extend Rosenbaum (2002) style Data

Analysis
Common test statistics like those proposed by Fisher; Cochran,

Mantel, and Haenszel; and McNemar all can be written as sum

statistics: t(Z, r) = ZTq, where Z random treatment

assignment, r is fixed response or outcome, and q is some

function of r (Rosenbaum, 2002).

This insight allows us to use relatively simple formulas for the

moments of normal approximations to the randomization based

exact distributions of these test statistics.

Thus, so far, our function xBalance() can provide results

analogous to all three of the tests mentioned above, as well as

randomization based tests for ANOVA like tests with continuous

outcomes.

We have not yet directly included exact methods (whether

simulation, analytic, or sampling based) as options, although

we plan to have at least one “slow=TRUE” argument for small

sample sizes.

veracity of these approximations.  The function 
xBalance() implements randomization based 
hypothesis tests based on the normal approximations 
for sum statistics.

Initial Balance
We stratify on two kinds of drugs: “priority” (post-1992 
deadline of 6 months) and “standard” (post-1992 
deadline of 12 months).
bal1<-xBalance(z~x1+...+xk,~priority, data=fdapdufa,chisquare.test=TRUE)
print(bal1)

The hypothesis of balance is rejected, with or without 
stratification on “priority.”

xBalance               package:RItools               R Documentation

STANDARDIZED DIFFERENCES FOR STRATIFIED COMPARISONS

Description:

     Given covariates, a treatment variable, and a stratifying factor,

     calculates standardized differences (biases) along each covariate,

     with and without the stratification.  Also, tests for conditional

     independence of the treatment variable and the covariates within

     strata.

Usage:

     xBalance(fmla, groups, data, chisquare.test=FALSE)

Arguments:

    fmla: A formula containing an indicator of treatment assignment on

          the left hand side and covariates at right. 

  groups: A formula with no left hand side and a single term, a

          stratifying factor, on the right hand side. 

    data: A data frame in which the preceding formulas are to be

          evaluated.

chisquare.test: Logical flag as to whether to perform  optional

          chisquare tests for global departure from randomization

          distribution

Details:

     In the unstratified case, the standardized difference of covariate

     means is the mean in the treatment group minus the mean in the

     control group, divided by the sd in the same variable estimated by

     pooling treatment and control group sds on the same variable.  In

     the stratified case, the denominator of the standardized

     difference remains the same but the numerator is a weighted

     average of within-stratum differences in means on the covariate. 

     Each stratum is weighted in proportion to ab/(a+b), where a and b

     are the number of treated and control units in the stratum; this

     weighting is optimal under certain modeling assumptions (discussed

     in Kalton 1968, Hansen 2006).  

     In both cases, the standardized difference is compared to its

     randomization distribution: the distribution of values it would

     take were the covariates held fixed and the treatment assignment

     variable permitted to vary.  For the unstratified comparison, the

     reference distribution consists of standardized differences

     between random subsamples of size m and their complements, where m

     is the number of subjects treated in the actual sample.  For the

     stratified comparison, the reference distribution is determined by

     in each stratum selecting a random treatment group of the same

     size as that stratum's treatment group in the realized sample,

     then calculating the standardized difference between the

     pseudo-treatment and pseudo-control groups.

     Treatment variables that aren't 0/1 valued are handled as follows.

     In the numerator of the standardized difference, we center the

     treatment variable within strata, in each stratum calculate the

     dot product of the recentered treatment variable with the

     covariates, and divide by the sample within-stratum variance in

     the treatment variable; the results are then added across strata. 

     (For 0/1 treatment variables, the result coincides with what was

                             pre.difference pre.sig post.difference post.sig

media                               0.08745                 0.09759         

I(prevgenxA/1000)                   0.16445                 0.15179         

prevgenxANA                         0.05222                 0.03739         

dthrtgenA                          -0.21066                -0.19159         

dthrtgenANA                         0.27672     *           0.25807      .  

I(hhospdisc/1e+05)                 -0.09987                -0.10916         

orderent                           -0.02537                -0.06041         

fsubmitsA                           0.02939                 0.05432         

fsubmitsANA                        -0.30854     *          -0.33747      *  

I(medline1total/1000)              -0.17449                -0.16235         

I(medline3total/1000)              -0.26091     .          -0.24556      .  

I(medline1safetytotal/10000)       -0.27009     *          -0.24983      .  

I(medline3safetytotal/1000)        -0.22926     .          -0.20845         

factor(discodeA)1600                0.21353                 0.20423         

factor(discodeA)2300               -0.09396                -0.10720         

factor(discodeA)2500               -0.02884                -0.03216         

factor(discodeA)3100                0.07719                 0.07689         

factor(discodeA)3230               -0.10414                -0.11445         

factor(discodeA)3300               -0.02030                -0.00510         

factor(discodeA)3500               -0.34503     *          -0.32153      *  

factor(discodeA)3700               -0.16670                -0.15383         

factor(discodeA)3800                0.17361                 0.17778         

factor(discodeA)4050                0.17361                 0.16605         

factor(discodeA)4100               -0.21478                -0.21190         

factor(discodeA)4140               -0.02030                -0.01679         

factor(discodeA)4400               -0.14851                -0.15640         

factor(discodeA)5200               -0.02030                -0.01679         

factor(discodeA)5260               -0.21478                -0.22366      .  

factor(discodeA)5400               -0.02884                -0.03216         

factor(discodeA)5500                0.04173                 0.02151         

factor(discodeA)5610                0.10861                 0.10575         

factor(discodeA)6100               -0.02030                -0.01679         

factor(discodeA)6140                0.09525                 0.12291         

factor(discodeA)6200                0.17361                 0.17778         

factor(discodeA)6400               -0.33995     *          -0.34575      *  

factor(discodeA)6500               -0.21478                -0.22366      .  

factor(discodeA)6640               -0.02030                -0.02848         

factor(discodeA)7500               -0.21478                -0.21190         

factor(discodeA)10100              -0.02030                -0.01679         

factor(discodeA)10400              -0.02884                -0.03216         

factor(discodeA)10800              -0.21478                -0.20015         

factor(discodeA)10820              -0.21478                -0.22366      .  

factor(discodeA)10900               0.05418                 0.04440         

factor(discodeA)11600              -0.10414                -0.10488         

factor(discodeA)11700              -0.21478                -0.22366      .  

factor(discodeA)12300               0.17361                 0.17778         

factor(discodeA)13000              -0.21478                -0.21190         

factor(discodeA)13100               0.17361                 0.16605         

factor(discodeA)13120              -0.02030                -0.02848         

factor(discodeA)80200               0.21353                 0.21385         

factor(discodeA)80300              -0.02030                -0.00510         

factor(discodeA)80700               0.21353                 0.20423         

factor(discodeA)82200               0.27803     *           0.28846      *  

factor(discodeA)85300              -0.03549                -0.04298         

factor(discodeA)88888              -0.05938                -0.07903         

Pre:  X-squared = 83.018, df = 55, p-value = 0.00867

Post: X-squared = 83.486, df = 55, p-value = 0.00791

Full Matching Using Optmatch
First, make a list of distance matrices (one matrix for 
priority and one for standard drugs), including a caliper.
absDist <- function(trtvar,data,scalarname,cal=Inf){
     sclr <- data[names(trtvar), scalarname]
     names(sclr) <- names(trtvar)
     dist<-abs(outer(sclr[trtvar],sclr[!trtvar], '-'))
     dist/(dist<=cal)}

psdistlist<-makedist(pdufaT~priorityF,data=fdapdufa,
                     fn=absDist,scalarname="ps4yr",cal=3)

thefm<-fullmatch(psdistlist)

Discontinuity +Matching=Balance
thefmbal<-xBalance(balpsformula,~thefm,data=fdapdufa,chisquare.test=TRUE)
plot(thefmbal)

Matched Sets
Standard Drugs Priority Drugs

Set PrePDUFA PostPDUFA Set PrePDUFA PostPDUFA

St.01 1 0 Pr.1 1 13
St.02 1 0 Pr.10 2 1
St.1 1 21 Pr.13 1 5
St.10 1 1 Pr.2 5 1
St.14 1 4 Pr.21 1 3
St.2 1 15 Pr.3 1 2
St.21 1 1 Pr.30 2 1
St.24 1 1 Pr.31 6 1
St.27 1 1 Pr.33 15 1
St.28 1 2 Pr.4 1 9
St.37 1 1 Pr.5 1 1
St.39 1 1 Pr.6 1 1
St.40 1 1
St.46 36 1
St.5 1 14
St.53 1 1
St.59 3 1
St.6 1 4
St.7 1 2
St.71 1 1
St.75 1 1
St.77 1 1
St.8 1 1
St.9 1 6
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Attributing Effects to the Change in 
Regulatory Regime.
We define a treatment effect at the unit level:

The estimand is the effect attributable to the PDUFA 
regime:

We can test for A=0...7 by adjusting the outcomes in 96 
ways:

##the Matrix deltas (96x6) contains all of the allowable attributions.
tc <- table(pdufa=fdapdufa[good,"pdufaF"], 
            withdraw=fdapdufa[good,"anywithdraw"], 
            match=thefm[good,drop=TRUE],exclude=NULL)

myattrib.arr<-array(0,dim=c(2,2,34,nrow(deltas)), 
                    dimnames=list(0:1,0:1,
                                  dimnames(tc)[[3]],1:nrow(deltas)))
myattrib.arr[1,1,,]<-tc["PostDiscont",'0',]
myattrib.arr[2,1,,]<-tc["PostDiscont",'1',]

myattrib.arr[2,1,clevs,]<-myattrib.arr[2,1,clevs,]-t(deltas)
myattrib.arr[2,2,clevs,]<-t(deltas)

thezs<-rdz(tc,myattrib.arr)
aes1<-data.frame(A=theAs,Z=thezs,p=pnorm(abs(thezs),lower=FALSE)*2)
tapply(aes1$p,aes1$A,range)

Tests of t(Z,r) for each possible attribution using the 
same kind of normal approximation this time with the 
rdz() function, yielded a CI containing all of the possible 
attributions, including 0.

How many safety based withdrawals can be attributed 
to the change in the FDA rules? Zero is probable, but 6 
is more probable than 0.
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Help Needed

We have not released this package on CRAN yet. We are

newbies when it comes to methods, classes, and formulae

τi = rti − rci

t(Z, r) =
S∑

s=1

ns∑

i=1

Zsi rsi

Help Needed

We have not released this package on CRAN yet. We are

newbies when it comes to methods, classes, and formulae

τi = rti − rci

t(Z, r) =
S∑

s=1

ns∑

i=1

Zsi rsi

A= 0 1 2 3 4 5 6 7
# Attributions Possible= 1 6 16 25 25 16 6 1

A= 0 1 2 3 4 5 6 7

lo p
0.3

0.3 0.3 0.3 0.3 0.5 0.7
.6

hi p 0.5 0.7 0.9 1.0 0.9 0.9
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