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Omitted variable bias can affect treatment effect estimates ob-
tained from observational data due to the lack of random assign-
ment to treatment groups. Sensitivity analyses adjust these estimates
to quantify the impact of potential omitted variables. This paper
presents methods of sensitivity analysis to adjust interval estimates
of treatment effect—both the point estimate and standard error—
obtained using multiple linear regression. Central to our approach
is what we term benchmarking, the use of data to establish refer-
ence points for speculation about omitted confounders. The method
adapts to treatment effects that may differ by subgroup, to scenar-
ios involving omission of multiple variables, and to combinations of
covariance adjustment with propensity score stratification. We illus-
trate it using data from an influential study of health outcomes of
patients admitted to critical care.

1. Introduction

1.1. Methodological context. In a common use of multiple linear regres-
sion, one regresses an outcome variable on a treatment variable and adjust-
ment variables, then interprets the fitted treatment-variable coefficient as
an estimate of the treatment’s effect on the outcome. The interpretation
relies on the assumptions of the linear model and some assumption to the
effect that there either are no unmeasured confounders or at least none that
demand adjustment. (Ignorability of treatment assignment [Rubin (1978);
Holland (1988), Appendix], is one such assumption; there are many vari-
ants.) The linearity assumptions are often testable given the data, but the
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remaining assumption is not. When regression results are questioned, it’s
often the nonconfounding assumption that is the focus of doubt.

Because the issue arises even with the most thorough observational stud-
ies, adjusting for any number of covariates, it fuels cynicism about obser-
vational research. If the possibility of unmeasured variable bias can’t be
removed, then why bother with potential confounders, particularly those
that are difficult to measure, or not obvious threats? It might be clear that
the damage from omitting a confounder W would be reduced by adjustment
for available correlates of W, yet, because introducing these correlates would
draw attention to the absence of W , not at all clear that effecting the ad-
ditional adjustments would enhance the credibility of the research. Plainly,
the problem here is not the methodological strategy of broadly adjusting
for relevant baseline characteristics but an absence of, or lack of awareness
of, suitable methods with which to quantify benefits of more comprehensive
confounder controls.

Sensitivity analyses, procedures quantifying the degree of omitted variable
bias needed to nullify or reverse key conclusions of a study, can help. Sensi-
tivity analysis methods for various models and data structures are proposed
in Cornfield et al. (1959), Rosenbaum and Rubin (1983), Rosenbaum (1988),
Copas and Li (1997), Robins, Rotnitzky and Scharfstein (2000), Scharfstein
and Irizarry (2003), Marcus (1997), Lin, Psaty and Kronmal (1998), Frank
(2000) and Imbens (2003), among others, the last four bearing closest re-
semblance to the approach to be presented here. Invariably the methods
start by in some way quantifying relationships between hypothetical omit-
ted variables and included ones, go on to give an algorithm for converting
these parameters into impacts on estimates, p-values or confidence limits,
and then leave to researchers themselves the task of deciding what parameter
values are plausible or relevant. Here we develop a method following the first
parts of this general recipe, but then doing a bit more to help researchers
calibrate intuitions about speculation parameters.

The resulting technique possesses a combination of advantages, making
it both uniquely practicable and conducive to certain insights. First, it ap-
plies to inferences made with ordinary multiple regression, as we show in
Section 2, as well as to inferences made with regression in combination with
propensity-score stratification, a topic discussed in Section 4.3. Second, it
quantifies relationships between omitted and included variables in terms in-
trinsic to multiple regression, permitting intuitions for the relationships to be
calibrated with a few additional regression fits (Section 2). [Angrist and Im-
bens (2002), Section 4, suggest such calibration in a related context.] Third,
it represents effects of an omission with just two quantities, one tracking
confoundedness with the treatment variable and the other measuring condi-
tional association with the outcome (Section 2). Fourth, there are important
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practical benefits to sensitivity analysis based on both of these quantities—
“dual” sensitivity analyses, in Gastwirth, Krieger and Rosenbaum’s termi-
nology (1998)—in that analysis based only on confoundedness with the
treatment variable is likely to overstate sensitivity. Our method makes this
plain (Section 3), as we will demonstrate with a case study to be intro-
duced presently, although some other methods may obscure it. Fifth, it gives
closed-form characterizations of how confidence intervals, as opposed only to
estimates or hypothesis tests, could be changed by inclusion of the omitted
confounder (Section 3.2). Sixth, the method readily adapts to analyses in
which several omissions are suspected, or where interactions with the treat-
ment variable are used to handle possible effect heterogeneity (Section 4).
Seventh, the same application brings to light certain practical advantages
of the use of propensity scores which to our knowledge have not previously
been noted (Section 4.3).

1.2. A case study. Our application is to Connors et al.’s (1996) highly
influential, and controversial, study of the critical-care procedure known al-
ternatively as Swan–Ganz, pulmonary artery or right heart catheterization
(RHC). RHC is a procedure to perform continuous measurements of blood
pressure in the heart and large blood vessels of the lungs. Introduced in
1970, it became standard procedure without first being tested in clinical
studies, as might be expected today, and empirical assessments that were
subsequently conducted failed to uncover evidence that it improved medical
outcomes [e.g., Gore et al. (1987); Zion et al. (1990)]. However, these stud-
ies were criticized for insufficient confounder controls. Using a large sample,
good measures and extensive adjustments for background variables, Connors
et al. (1996) echoed the disappointments of the earlier assessments and went
further, finding RHC to worsen, rather than improve, both mortality and
the duration of treatment in critical care. Each of these studies used non-
randomized data and is in some degree vulnerable to omitted variable bias.
Although the results of subsequent randomized trials have been largely con-
sistent with this picture [Rhodes et al. (2002); Sandhan et al. (2003); Shah
and Stevenson (2004); Richard et al. (2003); Harvey et al. (2005)], the proce-
dure remains a staple of critical care, and the surrounding debate continues.
This paper examines how the omission of covariates from Connors et al.’s
data might skew point and interval estimates of RHC’s effect on length of
stay, in the process shedding light on the degree of protection from omitted
variables afforded by included ones.

1.3. The SUPPORT data. Connors et al.’s (1996) data come from the
Study to Understand Prognoses and Preferences for Outcomes and Risks of
Treatments (SUPPORT). The study collected data on the decision-making
and outcomes of seriously ill, hospitalized adult patients. Patients included
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in the study had to meet certain entry criteria and a predefined level of
severity of illness. All 5735 SUPPORT patients who were admitted to an ICU
in the first 24 hours of study were analyzed together, for reasons detailed in
Connors et al. (1996). Data include initial disease categories upon admission,
physiological measurements, and demographic information. Patients were
coded as having had RHC if it was performed within the first 24 hours of
the study.

Length-of-stay is the difference between a patient’s recorded dates of entry
and exit from the hospital. Here we study the omitted variable sensitivity
of Connors et al.’s finding that RHC increases costs, by lengthening stays
in the hospital. For cost analysis it is logical to compare lengths of stay
irrespective of whether those stays ended in death, as Connors et al. do
and as we do also. Since a medical procedure could, in principle, shorten
stays only by increasing mortality, comparisons like this one speak directly
to economic effects but not to health effects of the procedure. (A study
focused on health outcomes, as opposed to resource utilization, would most
naturally begin by analyzing survival and continue with analyses of patient
experience, including duration of stay in the hospital, that address the issue
of censoring by death [e.g., Rubin (2006)]. Such analyses require methods
other than ordinary multiple regression, however, and sensitivity analysis
for them is somewhat beyond the scope of this paper.)

1.4. First-pass regression results. Length-of-stay is right-skewed. We log-
transform it before regressing it on RHC and covariates. There are approxi-
mately 50 covariates for which regression adjustments might be considered;
a backward stepwise selection procedure reduces this number to 19, and es-
timates the RHC effect as 0.11: taking the log transformation into account,
RHC seems to increase lengths of stay by about 100∗ (exp(0.11)−1) = 12%.
To reflect variability added by variable selection [Faraway (1992)], we ran a
nonparametric bootstrap to determine null quantiles for regression parame-
ters’ t-statistics; in this case, however, bootstrap t-quantiles were similar to
quantiles of the appropriate t-distribution. (Code for these and other com-
putations discussed in the paper appears in a supplement [Hosman, Hansen
and Holland (2010)].) Either way, a 95% confidence interval for the RHC
effect ranges from 0.06 to 0.16, encompassing increases of 6% up to 18%.

2. Effect estimates accounting for omitted variables To understand how
an omitted variable, W , could affect the coefficient on the treatment vari-
able, Z, in a hypothetical regression of a given outcome on these and other
variables,

Y = αXT + βZ + δW + e,(1)



SENSITIVITY OF LINEAR REGRESSION COEFFICIENTS 5

it is well to begin by examining how included variables affect the treatment
coefficient in the regression that was actually performed,

Y = aXT + bZ + e.(2)

This process lends context to an accompanying sensitivity analysis.

2.1. Omitted variable bias. Perhaps the most familiar way of comparing
regressors is in terms of their effects on R2; we begin in this mode. Of
33 regressors (columns of the design matrix corresponding to the set of 19
covariates, some of which are categorical with multiple levels), the one that
moves R2 the most is “DNR status,” an indicator of whether there was a do-
not-resuscitate order on file for the subject on the day that he first qualified
for inclusion in the study. Without it, R2 would be reduced from 0.141 to
0.112; in contrast, removal of the next-most predictive regressor reduces
R2 only to 0.131. On this basis one might expect DNR status to have a
relatively large effect on inferences about the RHC effect, and in a sense it
does: omitting it from the regression equation increases the RHC coefficient
estimate from 0.112 to 0.143, 1.2 standard errors. For comparison, consider
a regressor which contributes more modestly to the outcome regression:
omission of “bleeding in the upper GI tract,” for instance, reduces R2 only
by 0.001, the 28th smallest of 33 such reductions, and removing it moves the
treatment coefficient only a few percent of an SE. Blurring the distinction
between parameters and estimates just a little, we refer to this difference as
bias, the bias that would have been incurred by omitting the DNR variable.
It appears that R2 does track omitted-variable bias.

There is a simple relationship between a covariate W ’s contribution to ex-
plaining the response, as measured by its impact on R2, and the bias incurred
by its omission. According to Proposition 2.1, this bias is the product of the
standard error on Z, the treatment variable, as calculated without regression
adjustment for W (another term to be explained presently) and ρy·w|zx, the
partial correlation of W and the response given Z and remaining covariates,
X . In turn, ρ2y·w|zx equals [(1 −R2

no W )− (1− R2
with W )]/(1 −R2

no W ), the
proportionate reduction in unexplained variance when W is added as a re-
gressor [Christensen (1996), Chapter 6]. That is to say, the square of the bias
due to omitting a covariate is linear in the fraction by which that covariate
would reduce unexplained variance. Returning to our example, DNR status
consumes 3.3% of outcome variation that would otherwise be unexplained,
which is 16 interquartile ranges greater than the third quartile of ρ2y·w|zx’s

associated with the 33 available regressors; the ρ2y·w|zx for upper GI bleeding,

in contrast, is 0.1%, just above the first quartile.
The degree to which an omitted variable can bias effect estimates through

the value of ρ2y·w|zx depends on the value of R2 with which we begin. In our
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example, the value of R2 is relatively small; when the R2 value is bigger,
changes in R2 have a more pronounced effect. Imagining another regression
with a higher baseline R2 and thus less unexplained outcome variation, con-
sider an unmeasured covariate that reduces R2 by the same percentage as the
DNR variable in our regression. As a result of having less unexplained vari-
ation to start, the proportionate reduction in unexplained variation, ρ2y·w|zx,
must be larger than that of DNR in our example. Such a variable would
consequently have a larger effect on the estimate of omitted variable bias.

The remaining factor in Proposition 2.1’s expression for omitted variable
bias expresses the degree to which the variable is confounded with treatment.
This confounding turns out to figure more centrally in omitted variable bias,
despite the fact that measurements of it arise less often in regression analysis
than do ρy·w|zx or R2. A straightforward descriptive measurement falls out of

Table 1

Selected included covariates’ relation to treatment and response variables, given
remaining included variables

Confounding with
RHC (|tW |)
(rounded)

% decrease in
unexplained variation by
adding W (100ρ2

y·w|zx)

Income∗ 6.8 0.3
Primary initial disease cat.∗ 48.1 3.4
Secondary initial disease cat.∗ 20.2 0.8

Comorbidities illness:
Renal disease 2.1 0.2
Upper GI bleed 0.7 0.1

Day 1 measurements:
APACHE score 5.1 0.1
White blood cell count 0.5 0.0
Heart rate 2.5 0.0
Temperature 2.3 0.1
PaO2/FIO2 15.4 0.1
Albumin 2.3 0.7
Hematocrit 3.3 0.9
Bilirubin 2.2 0.1
Sodium 3.1 0.1
PaCo2 6.8 0.2
DNR 6.5 3.3
PH 3.7 0.3

Admit diagnosis categories:
Neurology 5.9 0.2
Hematology 3.6 0.1

∗Categorical variables with multiple levels. (Strictly speaking, these rows of the table give

F 1/2
W in the middle column, not tW ; see Section 4.1.)
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the regression of Z on the remaining regressors from the outcome regression:
their confoundedness with Z is reflected in their t-statistics, the ratios of
their coefficient estimates to their conventional standard errors. Note that
these are here considered as descriptive, not inferential, statistics; were this
auxiliary regression instead being used for statistical inference, a nonlinear
model may be required for binary Z, in which case these nominal standard
errors may not be appropriate. Denoting by tW the t-ratio attaching in this
way to a regressor W , by b the RHC-coefficient in the absence of W and
by β the same coefficient when W is included, the bias due to omission of a
regressor decomposes as follows.

Proposition 2.1. If R2
y·zx < 1 and tW is finite, then

b̂− β̂ = SE(b̂)tWρy·w|zx.(3)

A proof is given in Section 3.2.
Besides being a strong predictor of the response, DNR status ranks highly

in terms of its confounding with the treatment: if RHC is regressed on the
covariates, then its t-statistic is −6.5, the fifth-largest in magnitude. (Ta-
ble 1 displays tW values, along with a few square roots of F -statistics, to
be explained in Section 4.1, for multicategory variables. The magnitudes
of the F -statistics are not directly comparable to those of the t-statistics.)
Consistent with there being little bias associated with removing it, upper
GI bleeding is as weakly related to the treatment variable as it was to the
response; its t is only −0.7, the fifth-smallest in magnitude. The strongest
confounder among the adjustment variables is the PaO2/FIO2 ratio, a re-
flection of oxygenation in the lungs, with t = −15.3. On the other hand,
its relatively small contribution toward explaining variation in the outcome,
ρ2y·w|zx = 0.0007, limits the effects of its removal on the treatment coefficient;

here b̂− β̂ is 0.011, or 40% of an SE. Although the effect on the treatment
coefficient of excluding the PaO2/FIO2 variable is tempered by its small cor-
responding ρ2y·w|zx, (3) says that an actual omitted variable this confounded
with treatment could contribute up to 15.3 standard errors’ worth of bias
(depending on how much more outcome variation it explains). If this possi-
bility is not merely notional, it follows that uncertainty assessments based
in the usual way on SE(b̂) are quite incomplete.

Proposition 2.1 suggests that the degree of an omitted variable’s confound-
ing with the treatment plays a potentially much larger role in determining
the bias from its omission than does its conditional association with the
response. As it can explain no more than 100% of otherwise unexplained
variation, in general ρ2y·w|zx ≤ 1, ensuring in turn that |b̂− β̂|/SE(b̂)≤ |tW |.
In contrast, nothing bounds the t-ratios tW—covariates highly collinear with
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Table 2

RHC-coefficient and its standard error after removing specified variables

Standard error

Excluded variable Estimate df = 5700 df = 50

No exclusion 0.112 0.0260 0.278
DNR order 0.143 0.0264 0.206
GI bleed 0.112 0.0260 0.274
PaO2/FIO2 0.122 0.0255 0.115

the treatment can introduce biases that are arbitrarily large, at least in prin-
ciple. We refer to an unsigned statistic |tW | as the treatment confounding of
W a covariate or potential covariate W .

Table 1 reports tW and ρy·w|zx values that actually occur in the SUPPORT
data, placing observed covariates in the role of W one at a time. With these
data, tW is often of a magnitude to make large biases possible (although
this is somewhat tempered by relatively small ρy·w|zx’s). The calculations
permit the statistician and his audience to calibrate intuitions for tW against
actual variables and their relations to the treatment. We refer to this as
benchmarking of treatment confounding.

2.2. Omitted variables and the treatment’s standard error. The repre-
sentation (3) of omitted-variable bias, as the product of SE(b̂) with other
factors, lends hope that a meaningful combinations of errors due to variable
omissions and sampling variability might be bounded by a multiple of SE(b̂).
A tempting solution is simply to add to the normal 97.5 percentile 1.96, or to
whatever other multiplier of the SE has been found appropriate to describe
likely sampling error, a quantity large enough to bound plausible values of
|tW ρy·w|zx|. This solution will often miss the mark, however, since omitting a
covariate affects standard errors as well as coefficient estimates. This is illus-
trated in Table 2, which shows effects on estimation of the RHC-coefficient
of omitting one-by-one the regressors discussed in Section 2.1.

According to Table 2, adjusting the RHC coefficient for covariates includ-
ing DNR order gives a smaller standard error, 0.0260, than does excluding
DNR order and adjusting for remaining covariates only (SE = 0.0264). In
contrast, inclusion of PaO2/FIO2 among the adjustment variables has the
effect of increasing the standard error, from 0.0255 to 0.0260. Including or
excluding upper GI tract bleeding leaves the standard error unchanged, sug-
gesting that omitted variables associated with little bias should have little
effect on the standard error. This turns out to be true, in a limited sense, as
can be read from Proposition 2.2: the same statistics governing the bias due
to omission of a covariate W also govern its effects on the standard error,
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in such a way that when both tW and ρy·w|zx are small, then including or
excluding W has little effect on the Z-coefficient’s standard error.

Proposition 2.2. If R2
y·zx < 1 and tW is finite, then

SE(β̂) = SE(b̂)

√

1 +
1+ t2W
df − 1

√

1− ρ2y·w|zx.(4)

Here df = n − rank(X) − 1, the residual degrees of freedom after Y is re-
gressed on X and Z.

Proposition 2.2 will be strengthened in Proposition 4.3, which is proved
in the Appendix.

Whereas |tW | and |ρy·w|zx| both associate directly with the size of the bias
from omitting W , they act in opposite directions on the standard error—
reflecting the fact that increasing R2 tends to reduce coefficients’ standard
errors, except when it’s increased at the expense of introducing colinear-
ity among regressors. The difference explains why omitting some variables
increases standard errors, whereas omitting others decreases them.

It also reaffirms that omitted variables’ effects on statistical inferences are
only incompletely reflected in omitted variable bias. In the context of the
present example, variable omissions have only modest effects on the standard
error; but this is a consequence of the sample being quite large (n= 5735)
relative to the rank of the covariate matrix (33): barring astronomically
large tW s, with df = 5700 the middle factor on the left side of (4) has to fall
close to 1; in consequence, even a tW of 16 inflates the standard error by at
most 2%, according to (4). In moderate and small samples, standard errors
are more sensitive. The third column of Table 2 presents standard errors
as they would be if the sample had been much smaller, such that df = 50,
but with the same sample means and covariances. While the omission of a
variable like GI bleed, which is only weakly related with already included
variables, still leaves the treatment’s standard error much the same, variables
that are either moderately or strongly confounded with the treatment now
cause wide shifts in the magnitude of the standard error. Adjustment for
the PaO2/FIO2 measurement, for example, now increases the treatment’s
standard error by a whopping 59%.

2.3. One sensitivity parameter or two? Should we be inclined to con-
sider worst-case scenarios, Proposition 2.2 reaffirms Proposition 2.1’s mes-
sage that the omitted variable’s treatment confounding, not its potential to
increase R2, most demands our attention. The ρy·w|zx-contribution to SE(β̂)
is a factor bounded above by 1, whereas the tW -factor can be arbitrarily
large—as could the tW -contribution to omitted-variable bias. The greater
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potential disturbance from confounding with the treatment than from large
new contributions to the outcome regression seems to be a feature multi-
ple regression analysis shares with other statistical techniques; indeed, sen-
sitivity analysis methods which set out to limit inference errors in terms
of a single sensitivity parameter parametrize confounding with treatment,
not predictivity of the response, countenancing arbitrarily strong response-
predictors in the role of the hypothetical omitted variable [e.g., Rosenbaum
(1988); Rosenbaum and Silber (2009)].

What would such an analysis suggest about the sensitivity of our RHC re-
sults to the omission of a confounder not unlike included variables?
PaO2/FIO2 was sufficiently confounded with treatment to indicate as many
as 16 standard errors’ worth of bias. Yet its inclusion in the regression ad-
justment moves the treatment effect by less than half a standard error. To
have moved β̂ so much, it would have had to consume all of the variation in
Y that was not explained without it, something no one would have expected
it to do. To the contrary, inspection of other variables’ contributions to R2,
as enabled by Table 1, suggests that 0.1 (for instance) would be a quite
generous limit on |ρy·w|zx|. This in turn would restrict omitted variable bias
due to a treatment-confounder as strong as PaO2/FIO2 to 1.6 SEs—still
a meaningful addition to the uncertainty estimate, if a less alarmist one.
Rather than reducing the number of sensitivity parameters by permitting
ρy·w|zx to fall anywhere within its a priori limits, it is more appealing to
retain ρy·w|zx, restricting it within generous bounds of plausibility.

3. Sensitivity intervals Taken together, Propositions 2.1 and 2.2 enable
a precise, closed-form description of the union of interval estimates {β̂ ±
q SE(β̂) : |tW |≤ T,ρ2y·w|zx ≤R}, for any nonnegative limits T,R on omitted
variables’ treatment confounding and contributions to reducing unexplained
variation—the collection of Z-slopes falling within the confidence interval
after addition of a covariate W such that −T ≤ tW ≤ T and ρ2y·w|zx ≤ R.

Such a union of intervals is itself an interval: following Rosenbaum (2002),
we call it a sensitivity interval ; and following Small (2007), we refer to
the determining set of permissible values for (tW ,ρ2y·w|zx) as a sensitivity

zone. The mapping of sensitivity zones to sensitivity intervals is given in
Proposition 3.1.

Proposition 3.1. Let Y , X, Z and W be as in (1) and (2), with both

regressions fit either by ordinary least squares or by weighted least squares

with common weights. Assume R2
y·zx < 1. Let ρy·w|zx, tW and df be as defined

in Section 2, fix q > 0 and write Cd(t) for [1 + (1 + t2)/(d− 1)]1/2.
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(i) Assuming only t2W ≤ T <∞,

β̂ ± q SE(β̂) = b± [−tWρy·w|zx + qCdf(tW )
√

1− ρ2y·w|zx] SE(b̂)(5)

⊆ b±
√

T 2 + q2Cdf(T )2 SE(b̂).(6)

(ii) Assuming t2W ≤ T <∞, ρ2y·w|zx ≤R where 0<R<T 2/(T 2+q2Cdf(T )2),

β̂ ± q SE(β̂)⊆ b± [TR1/2 + qCdf(T )(1−R)1/2] SE(b̂).(7)

(iii) If, on the other hand, T 2/(T 2 + q2Cdf(T )2)<R< 1, then (6) is sharp:
its right-hand side represents the union of (5) as (ρy·w|zx, tW ) ranges

over the sensitivity zone [−R1/2,R1/2]× [−T,T ].

Proposition 3.1 expresses solutions to the constrained optimization prob-
lems of determining the smallest β̂− q SE(β̂) and largest β̂+ q SE(β̂) consis-
tent with assumed restrictions on ρy·w|zx and tW : in part (i), the restrictions
pertain only to tW , while parts (ii) and (iii) impose restrictions on ρy·w|zx

also. The proof of the proposition appears in the Appendix.

Remarks. (a) In many problems df will be large in comparison with
plausible values of t2W , confining Cdf(tW ) and Cdf(T ) to the immediate vicin-
ity of 1. (b) Part (ii) says that if the magnitude of ρy·w|zx is assumed to be
small or moderate, then the extremes of the sensitivity interval correspond to
speculation parameter values sitting at extremes of the sensitivity zone—the
same extremes at which (signed) omitted variable bias is minimized or max-
imized. According to part (iii), however, if ρy·w|zx is permitted to be large,
then restricting attention to sensitivity parameter values that maximize or
minimize omitted variable bias may lead the statistician to underestimate
the proper extent of the sensitivity interval.

3.1. Pegging the boundaries of the sensitivity zone. Because our analysis
began with covariate selection, there are a number of deliberately omitted
variables that can be used to peg at least one boundary of the sensitivity
zone. As one might expect, the covariates eliminated by the stepwise proce-
dure add little to those variables that were included in terms of prediction
of the response, and it is too optimistic to suppose of a genuinely unmea-
sured confounder that its contribution to the outcome regression would be
no greater than that of measured covariates that variable selection would
put aside. On the other hand, confounding with Z plays little role in com-
mon stepwise procedures like the one we used, and the deliberately omitted
variables can be used to guide intuitions about plausible values of tW . We
selected six of these whose partial associations with RHC spanned the full
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Table 3

95% sensitivity intervals for the treatment coefficient, with the putative unobserved
variable’s treatment confounding (|tW |) hypothesized to be no greater than the treatment

confounding of 6 deliberately omitted variables. The decrease it would bring to the
variance of response residuals is hypothesized to be no greater than either of 2 index

values, 1% and 10%, or is not restricted

% decrease in unexplained variation
(100ρ2

y·w|zx)

Variable

Treatment
confounding
benchmark 1% 10% Unrestricted

Insurance class 12.2 most (0.03, 0.20) (−0.04, 0.26) (−0.21, 0.43)
Respiratory eval. 8.9 some (0.04, 0.19) (−0.01, 0.23) (−0.12, 0.35)
Mean blood press. 8.6 some (0.04, 0.19) (−0.01, 0.23) (−0.12, 0.34)
Cardiovascular eval. 8.5 some (0.04, 0.19) (−0.01, 0.23) (−0.11, 0.34)
Weight (kg) 6.1 some (0.04, 0.18) (0.01, 0.21) (−0.05, 0.28)
Immunosuppression 0.4 least (0.06, 0.16) (0.06, 0.16) (0.06, 0.16)

range of such associations among stepwise-eliminated covariates and used
their tW -values to delimit the first dimension of several sensitivity zones.
Table 3 delineates the tW -part of the sensitivity zone accordingly, choosing
the bound T on treatment confounding to coincide with the magnitude of
confounding, conditional on stepwise-selected covariates, between the treat-
ment and each of our six covariates.

The benchmarking method, using known variables to determine plausi-
ble values of tW , informs targeted speculation about the potential effects of
omitted variable bias. Using existing information in this way, we can spec-
ulate about the effects of omitted covariates that are of a similar nature to
measured covariates—tW benchmarks extracted from partial demographic
information might reasonably predict the tW values that would attach to
additional demographic variables, were they available. To calibrate intu-
itions about omitted variables that are different in kind from included ones,
reference values for tW might also be obtained from external data sets.

Many analysts will have sharper intuition for potential covariates’ effect
on R2, making it relatively easy to set plausible limits on ρ2y·w|zx. Table

3 considers ρ2y·w|zx ≤ 0.01 or 0.10, which may be useful as general starting
points. In the present case study, for instance, when included covariates are
removed and put in the role of W , ρ2y·w|zx = 0.01 corresponds approximately
to the second most predictive of them, and the strongest single predictor
(DNR order) gives ρ2y·w|zx = 0.03. It appears that ρ2y·w|zx ≤ 0.1 is a rather
conservative bound: it is difficult even to find sets of included covariates
that jointly contribute so much to the outcome regression as this. Only by
simultaneously placing all of the covariates into the role of W , leaving the
intercept alone in the role of X , does ρ2y·w|zx reach 0.10. Restoring these
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variables into the regression, and barring scenarios of still-omitted variables
for which ρ2y·w|zx exceeds 0.1, Table 3 shows the result of a positive treat-
ment effect to be sensitive to omitted confounding on par with some of
the strongest of the included confounders, but insensitive to confounding
weaker than that. If benchmarking leads to accurate guesses about the val-
ues of treatment confounding and reduction in unexplained variance, and
if the linear model would hold were the omitted confounder added to the
regressors, then 95% sensitivity intervals will have 95% coverage, despite the
variable omission.

3.2. Basis for sensitivity formulas. Propositions 2.1, 2.2 and 3.1 extend
better-known descriptions of bias in regression coefficients’ point estimates
due to variable omission [e.g., Seber (1977), page 66] to interval estimates.
They also have antecedents in earlier literature on numerical adjustment of
multiple regression results for the addition or removal of a covariate [Cochran
(1938)]. Of the three, Proposition 2.1’s proof is the most illuminating. It also
conveys the flavor of the others, which appear in the Appendix.

Consider X to be a matrix containing a column of 1’s (or columns from
which a column of 1’s can be recovered as a linear combination) and let
Y , Z and W be column vectors of common extent, equal to the number of
rows of X. An inner product is defined as (A,B) :=

∑

wiaibi/
∑

wi, where
wi is a quadratic weight for the ith observation (in the case of unweighted
least squares regression, wi ≡ 1). Write 1 for the column vector of 1s. For
vectors A, B and C, let Pj(A|B,C) represent the projection of A into the
subspace spanned by B and C. Variances and covariances are defined as
follows: σab·c := (A− Pj(A|C),B − Pj(B|C)), σ2

a·c = σaa·c; σab = σab·1, σ2
a =

σ2
a·1. Partial correlations are then given as follows: ρab := σab/(σaσb); ρab·c :=

σab·c/(σa·cσb·c). Denote the degrees of freedom available for estimating b as
df = n −m − 1, where m = column.rank(X). The nominal standard error
estimates for b̂ and β̂ [cf. (2) and (1)] are then

SE(b̂) = df−1/2σy·zx
σz·x

and SE(β̂) = (df − 1)−1/2σy·zxw
σz·xw

.(8)

Proof of Proposition 2.1. To show b̂− β̂ = SE(b̂)tW ρy·w|zx, write

Pj(W |Z,X) =:B∗Z +C∗
X

t.(9)

Using (9) to project the OLS estimate of regression (1) onto the span of
(X,Z) and then comparing to (2) gives b̂ − β̂ = B∗δ̂, a well-known result
[Seber (1977), page 66].

Write W⊥x for W − Pj(W |X), Z⊥x for Z − Pj(Z|X), Y ⊥zx for Y −
Pj(Y |Z,X), and W⊥zx for W −Pj(W |Z,X). Then Pj(W⊥x |Z⊥x) =B∗Z⊥x ,
and Pj(Y ⊥zx |W⊥zx) = δ̂W⊥zx . These formulas imply B∗ = σwz·x/σ2

z·x and
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δ̂ = σyw·zx/σ2
w·zx = ρyw·zxσy·zx/σw·zx, so that b̂− β̂ =B∗δ̂ can be written as

the product of σy·zx/σz·x, σwz·x/(σz·xσw·zx) and ρyw·zx. Introducing mutu-
ally canceling factors of (df)±1/2 to the first and second of these and applying
(8) turns this into the product of SE(b̂), (df)1/2σwz·x/(σz·xσw·zx) and ρyw·zx.

But tW is just the ratio of σwz·x/σ2
w·x to σz·wx/[(df)1/2σw·x], which simplifies

to the second of these terms, by way of the identity σ2
z·xσ

2
w·zx = σ2

w·xσ
2
z·wx

(an algebraic consequence of the definition of σ2
a·c). The result follows. !

4. Extensions As it is presented in Section 2, our method explores sen-
sitivities of covariance-adjusted estimates of a main effect to the omission
of a single covariate. It may appear to be limited, then, to effect estimates
made by linear covariate adjustment, without interaction terms or other
allowances for heterogeneity of treatment effects, and to hidden bias sce-
narios involving omission of a single variable, rather than several. Such an
appearance would be misleading.

4.1. Several variables omitted at once. Suppose now that W denotes not
one but several omitted variables, or that it represents a single nominal
variable with 3 or more levels, so that its encoding in terms of a design matrix
would require 2 or more columns, and 2 or more degrees of freedom. Results
previously presented still describe potential effects of W ’s omission, if tW is
reinterpreted in a natural way. (The sensitivity parameter ρ2y·w|zx retains its
original interpretation, as the proportionate decline in unexplained variance
from including W as a regressor.)

When Z is regressed on X and a multivariate W , there is no one W -
coefficient and corresponding t-statistic. The natural analogue of such a
statistic is the ANOVA F -statistic comparing regression fits with and with-
out W , FW ; for univariate W , FW = t2W , as is well known. When rank(W )>
1, define the omitted variables’ treatment confounding, again denoted tW ,
as the positive square root of [(k)(df)/(df +1− k)]FW . Proposition 2.1 then
gives the following.

Corollary 4.1. Suppose R2
y·zx < 1, t2W is finite, and rank(W ) = k > 1.

Then (b̂− β̂)2 ≤ V̂ (b̂)[(k)(df)(df + 1− k)−1]FW ρ2y·w|zx or, equivalently,

|b̂− β̂|≤ SE(b̂)tW |ρy·w|zx|.

Proof. Without loss of generality, W is uncorrelated with Z and X :
if not, replacing W with W − Pj(W |X,Z) leaves Z-coefficients and their
standard errors unchanged. Define W̃ = Pj(Y ⊥x,z|W ), where Y ⊥x,z = Y −
Pj(Y |X,Z). Again without loss of generality, W = (W̃ ,W2, . . . ,Wk), where
W̃ ⊥ (W2, . . . ,Wk). Writing

Pj(Y |Z,X,W ) =: α̂+ β̂Z + γ̂XT + δ̂1W̃ + δ̂2W2 + · · ·+ δ̂kWk,(10)
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it is immediate that δ̂2, . . . , δ̂k = 0, since W2, . . . ,Wk are orthogonal to
Pj(Y ⊥x,z|W ), and hence orthogonal to Y ⊥x,z. Projecting (10) onto the span
of (Z,X), and then equating the Z-coefficient in what results with the Z-
coefficient in (2) yields

β̂ + δ̂1B
∗
1 = b̂,(11)

where B∗
1 is defined by Pj(W̃ |Z,X) =B∗

1Z +C∗X . In other words, b̂ and β̂
are related just as they would have been had W been of rank 1, rather than
k, consisting only of W̃ .

We record some entailments of the definitions of ρy·w|zx, tW and FW in a
lemma, proved in the Appendix:

Lemma 4.2. Suppose R2
y·zx < 1, t2W is finite, and rank(W ) = k. Then:

(1) ρ2y·w|zx = ρ2y·w̃|zx; (2) t2
W̃

≤ k
df

df + 1− k
FW .

The desired result now follows from (11), Proposition 2.1 and Lemma 4.2.
!

When rank(W ) > 1 we have the following variant of Proposition 2.2,
proved in the Appendix.

Proposition 4.3. Suppose R2
y·zx < 1, t2W is finite, and rank(W ) = k,

k > 1. Then

V̂ (β̂) = V̂ (b̂)

[

1 +
k+ t2W
df − k

]

(1− ρ2y·w|zx).(12)

Because the sensitivity intervals in Proposition 3.1 follow algebraically
from the bias and standard error representations (3) and (4), they are valid
for W of arbitrary rank. The proofs of Proposition 3.1 and the following are
essentially the same.

Proposition 4.4. Proposition 3.1 continues to hold if rank(W ) = k >
1, provided Cd(t) is read as [1 + (k + t2)/(d − k)]1/2 and tW is read as
{[k(df)/(df + 1− k)]FW }1/2.

Some of the hypothetical omissions discussed in Section 2 are of the
type for which Proposition 4.4 is needed. The variable “Insurance class”
appearing in Table 3, for example, is a nominal variable with 6 categories,
consuming 5 degrees of freedom when added as a regressor. Its treatment
confounding, tW , was calculated as the appropriately rescaled square-root
of the F -statistic comparing the linear regression of Z on X and it to the
regression of Z on X alone, about 2.24.
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4.2. Treatment effects differing by subgroup. Recall from Section 2.1 that
of the 33 X-variables selected as covariates for the regression of length of
stay on RHC, DNR status most reduced R2. Patients with do-not-resuscitate
orders suffered 25% greater mortality during the study than other patients,
probably making it inevitable that their outcomes on this variable should
systematically differ from patients without such orders. It is natural to sus-
pect that effects of RHC might differ for them as well. In this case our linear
models require interactions between RHC and DNR status—and perhaps
other interactions as well, for that matter, but it suffices for us to restrict
attention to the treatment interaction with a single binary moderating vari-
able, as all issues pertaining to sensitivity analysis arise in this simplest case.
Marcus (1997) explores related problems.

Supplementing the regression of length of stay on covariates and RHC
with an interaction between RHC and DNR status gave quite revealing
results. The additional right-hand side variable, an indicator of RHC and
DNR simultaneously, bears a coefficient of −0.43 and a t-statistic of −5: it
appears that the model devoting a single term to the treatment obscured
significant effect heterogeneity. Correspondingly, the main RHC coefficient,
interpretable as the effect for patients without DNR orders, is larger (+0.15)
than it was in earlier analyses without interactions (+0.11); its standard
error increases slightly, from 0.026 to 0.027.

To subject these results to sensitivity analysis, we again use index values
to limit the impact of the hypothesized omitted covariate on R2: ρ2y·w|zx ≤
0.10 remains a generous limit, as simultaneously adding all 33 covariates
to the regression of length of stay on RHC (now interacted with DNR sta-
tus) decreases unexplained variation by only slightly more, about 11%. To
set suitable limits on the omitted variable’s treatment confounding, imagine
for the moment that the inclusion of an interaction term had been han-
dled somewhat differently: rather than adding ZX1, the product of RHC
and DNR indicators, add in X̃ = ZX1 − Pj(ZX1|X,Z). The coefficient of
this variable lacks any straightforward interpretation, but its addition to the
right-hand side of the equation has precisely the same effect on remaining
coefficients as would the addition of ZX1 itself. To benchmark treatment
confounding, we would then regress Z on X and X̃ . By construction, how-
ever, X̃ is orthogonal to Z and X , so that it itself earns a t-statistic of 0
in this fitting, and its inclusion has no effect other than to remove a single
residual degree of freedom. In other words, the tW -benchmarks extracted by
regressing Z on X alone, used for sensitivity analysis of the RHC effect in
the absence of interactions, serve just as well here after multiplication by
the factor [(df + 1)/(df)]1/2 (which in this case is effectively 1). The first 2
columns of Table 4 use benchmarks gathered in this way, finding the conclu-
sion that RHC increases lengths of time in the hospital for patients without
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Table 4

Sensitivity intervals for subgroup effects and for weighted average effects

Treatment-confounding benchmarks found with estimated

Effect on patients Effect on patients ETT-weighted
w/out DNR order with DNR order average effect

Variable tW ρ2

y·w|zx ≤ 0.1 tW ρ2

y·w|zx ≤ 0.1 tW ρ2

y·w|zx ≤ 0.1

Insurance class 12.2 (−0.01, 0.30) 11.9 (−0.74, 0.17) 12.2 (−0.03, 0.27)
Respiratory eval. 8.9 (0.02, 0.27) 8.1 (−0.64, 0.08) −4.1 (0.03, 0.20)
Mean blood press. −8.6 (0.02, 0.27) −8.2 (−0.64, 0.08) −5.1 (0.03, 0.21)
Cardiovascular eval. −8.5 (0.02, 0.27) −7.7 (−0.63, 0.07) −7.1 (0.01, 0.23)
Weight (kg) 6.1 (0.05, 0.25) 6.4 (−0.60, 0.03) −5.3 (0.03, 0.21)
Immunosuppression 0.4 (0.09, 0.20) 0.4 (−0.44, −0.12) −5.9 (0.02, 0.22)

DNR orders to be a bit less sensitive to hidden bias than was the analo-
gous conclusion for the analysis assuming homogeneous treatment effects,
in Table 3.

When we instructed it to include the RHC–DNR interaction among the
explanatory variables, our software might equally well have added an indi-
cator of RHC and the absence of DNR, Z(1−X1). In this case, the main
effect would be interpretable as the effect of RHC for patients with, rather
than without, DNR orders. It follows that had that effect been the object
of our interest, we could construct a sensitivity analysis for it in the same
manner as just above, by persuading our regression program to expand the
interaction differently. In actuality, things are still simpler than that; we
really only need to take ordinary care in interpreting the regression results,
and somewhat modify the benchmarking equation. The effect for patients
with DNR orders is the sum of the main RHC effect and the RHC-and-DNR
effects, 0.148 + (−0.430) =−0.28, with estimated variance equal to the sum
of the two estimated variances and twice their covariance, 0.0065 = (0.080)2 .
In parallel, to benchmark treatment confounding for this analysis, regress
the sum of the main RHC indicator and the interaction term, the product
of RHC and DNR indicators, on covariates. This gives somewhat different
results than did the benchmarking for the RHC effect on patients without
DNR orders, which omitted the interaction term from the left-hand side of
its regression equation; compare the middle and left columns of Table 4.

The same approach yields a sensitivity analysis for any target parameter
representable as a linear combination of main effect and interaction terms.
Take the effect of treatment on the treated, or ETT, parameter, considered
from within a model permitting treatment effects to vary within specified
subgroups. If the groups are, for simplicity, patients with and without DNR
orders, then since 7% of patients receiving RHC had DNR orders, the ETT
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can be represented as the main effect plus 0.07 times the DNR–RHC inter-
action effect, estimated as 0.148+(0.07)−0.430 = 0.118, with corresponding
standard error 0.026. For benchmarking, regress on covariates the RHC indi-
cator plus 0.07 times the product of RHC and DNR indicators, with results
as given in the rightmost two columns of Table 4.

4.3. Propensity-adjusted estimates of treatment effects. Regression ad-
justs between-group comparisons by attempting to remove adjustment vari-
ables’ contributions from the outcomes before comparing them. In contrast,
adjustments based on propensity scores attempt to divide the sample into
strata within which treatment and control subjects have similar distributions
of covariates. We estimated propensity scores using all 50 of the SUPPORT
data’s covariates in a logistic regression [Rosenbaum and Rubin (1984)],
finding six equally-sized subclasses made treatment-control differences on
the covariates jointly insignificant at level α = 0.10 [Hansen and Bowers
(2008)]. One can couple such a stratification with linear modeling to esti-
mate treatment effects. In the simplest variant, responses are regressed on
the treatment and fixed stratum effects. Fitting such a model to the SUP-
PORT data gives an RHC effect similar to what was estimated after ordinary
covariance adjustment, as in Section 1.4, but with somewhat larger standard
errors.

The main assumption for this model is that so far as the outcome, length of
stay, is concerned, the only systematic difference between the RHC and non-
RHC patient in a propensity stratum is RHC itself. Relax this assumption
in favor of another to the effect that so far as differences between outcomes
and their projections onto an omitted variable are concerned, within strata
RHC and non-RHC patients do not systematically differ. Were the omitted
variable to become available, we could adjust by adding it to the explanatory
side of the linear model. Without it, we can do sensitivity analysis.

Benchmarking treatment-confounding levels takes a bit more effort than
before: rather than simply regressing Z on covariates and recording their t-
or F -statistics, we have to account in some way for the propensity strat-
ification. We do this by removing the covariates, one at a time, from the
propensity model, after each removal subclassifying the sample into sextiles,
as before, but now using the modified propensity score; then regressing Z on
the withheld covariate and on the propensity strata in order to associate a
t- or F -statistic with that covariate. Results of this process appear in Table
5.

The results exhibit a striking pattern: adjustment based on propensity
scores gives causal inferences that are far less sensitive to omitted variables
than does regression-based covariate adjustment. With it, one can expect less
residual confounding with the treatment than with covariate adjustment, as
seen in smaller tW -values on the propensity-score side of the table. In a
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Table 5

Sensitivity intervals for the treatment effect after ordinary covariance and
propensity-score adjustment, illustrating that propensity adjustment better limits

sensitivity to the omission of adjustment variables. For covariance adjustment, tW is
limited by the confoundedness with the treatment of 6 variables that had been eliminated
by a preliminary variable-selection procedure, as in Table 3; for propensity adjustment,

limits on treatment confounding are set by separately removing each of these and
calculating their tW ’s after propensity adjustment for remaining variables

OLS regression Propensity adjusted regression

|tW |ρ2

y·w|zx ≤ 0.01ρ2

y·w|zx ≤ 0.1|tW |ρ2

y·w|zx ≤ 0.01ρ2

y·w|zx ≤ 0.1

Insurance class 12.2 (0.03, 0.20) (−0.04, 0.26) 8.6 (0.02, 0.18) (−0.03, 0.23)
Respiratory eval. 8.9 (0.04, 0.19) (−0.01, 0.23) 3.1 (0.04, 0.17) (0.02, 0.19)
Mean blood press. 8.6 (0.04, 0.19) (−0.01, 0.23) 6.8 (0.03, 0.18) (−0.01, 0.22)
Cardiovascular eval. 8.5 (0.04, 0.19) (−0.01, 0.23) 5.4 (0.03, 0.17) (0, 0.20)
Weight (kg) 6.1 (0.04, 0.18) (0.01, 0.21) 5.1 (0.03, 0.18) (0.01, 0.21)
Immunosuppression 0.4 (0.06, 0.16) (0.06, 0.16) 0.5 (0.04, 0.16) (0.04, 0.16)

sense, propensity scores focus on confounding with the treatment, whereas
covariate adjustment focuses on covariates and the response. Recall from
Section 2 that while both matter to omitted variable bias, confounding with
the treatment is both more difficult to pin down and potentially more per-
nicious. It stands to reason that while propensity adjustment may pay a
slight penalty up front, in terms of somewhat larger standard errors than
covariance adjustment, it offers a greater return downstream, in reduced
sensitivity to hidden bias.

5. Summary For effect estimates adjusted for covariates using ordinary
least squares, impacts of covariate omission on point estimates and on stan-
dard errors have been represented in terms of two statistics relating the
omitted variable to included ones, a measure of how adding the variable
would affect R2 and a measure of its association with the treatment vari-
able given included variables. We refer to the latter as the omitted vari-
able’s treatment-confounding measurement. When generous limits on how
the omitted variable would affect R2 can be defended, they yield far less
pessimistic assessments of sensitivity than would be possible without such a
limit. Unlike the sensitivity “parameter” pertaining to R2, plausible limits
on the treatment-confounding parameter are unlikely to emerge from in-
tuition alone; on the other hand, it is straightforward and informative to
determine study-specific benchmarks for it using available data.

The changes to the treatment coefficient’s point and error estimates that
the addition of an omitted covariate would cause have been represented as
multiples of its standard error. So these representations yield error appraisals
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accounting for certain hidden biases in familiar terms, as a multiple of the
SE. The method adapts readily to scenarios of multivariate omission, het-
erogeneous treatment effect and combinations of regression with propensity
scores.

APPENDIX: PROOFS

Proof of Lemma 4.2. Under the conditions of the lemma, (1) and (2)
can be established: (1) In a regression of Z and X on Y , adding W̃ has the
same effect on the Z-coefficient and model R2 as adding W . Thus, (1) holds.
(2) Furthermore, W̃ ∈ span(W ), so W̃ explains no more variation in Z than

does W . Thus, R2
z·w|x ≥R2

z·w̃|x, which implies
ρ2z·w|x

1−ρ2
z·w|x

≥
ρ2z·w̃|x

1−ρ2
z·w̃|x

. By defini-

tion of the ANOVA F -statistic, FW = [(σ2
z·x − σ2

z·xw)/(k)]/[σ
2
z·xw/(df + 1− k)],

or

FW = [(df + 1− k)/k][ρ2z·w|x/(1− ρ2z·w|x)].(13)

As rank(W̃ ) = 1, FW̃ = t2
W̃

= df
ρ2z·w̃|x

1−ρ2z·w̃|x
. The result follows. !

Proof of Proposition 4.3. To relate SE(b̂) and SE(β̂), begin by
rewriting some of the variance terms: σ2

y·zxw = Var(Y ⊥zxw) = Var(Y ⊥zx −

Pj(Y ⊥zx|W⊥zx)) = σ2
y·zx−σ2

y·zxρ
2
yw·zx = σ2

y·zx(1− ρ2yw·zx). Similarly, σ2
z·xw =

σ2
z·x(1− ρ2z·w|x).

Thus, by (8), SE(β̂) = (df−k)−1/2(σy·zx/σz·x)[(1− ρ2yw·zx)/(1− ρ2zw·x)]
1/2,

or, invoking (8) again, SE(b̂)[df/(df − k)]1/2[(1− ρ2yw·zx)/(1− ρ2zw·x)]
1/2.

By (13), (1− ρ2z·w|x)
−1 = 1+ k(df + 1− k)−1FW . Recall that tW was de-

fined for multivariate W in Section 4.1, as a rescaling of F 1/2
W . Applying

that definition, (1− ρ2z·w|x)
−1 = (df + t2W )(df−1). The relationship (12) fol-

lows. !

Proof of Proposition 3.1. Equation (5) comes directly from Propo-

sitions 2.1 and 2.2. For (6), write β̂ − q SE(β̂) = b̂+ ltW (arcsinρy·w|zx)SE(b̂)

and β̂ + q SE(β̂) = b̂ + utW (arcsinρy·w|zx)SE(b̂), where arcsinρy·w|zx ∈
(−π/2,π/2) and lt(θ) := −t sinθ − qCdf(t) cos θ and ut(θ) := −t sinθ +
qCdf(t) cos θ. To maximize ut(arcsinρ) as t ranges over [−T,T ] and ρ ranges
over [−1,1], maximize t +→ sup{ut(arcsinρ) :−1≤ ρ≤ 1}. We need only con-
sider t < 0. For such a t, calculus shows that ut(·) is concave unimodal on
(−π/2,π/2), attaining its maximum at arctan{−t/[qCdf(t)]}; with some al-
gebra and trigonometry, sup{ut(arcsinρ) :−1 ≤ ρ ≤ 1} is seen to be
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(t2 + q2Cdf(t)2)1/2. Consequently, sup{ut(arcsinρ) : |t| ≤ T, |ρ| ≤ 1} =
(T 2 + q2Cdf(T )2)1/2. Similarly, as t and θ range over [−T,T ] and
(−π/2,π/2), lt(θ) takes its minimum value, −(T 2 + q2Cdf(T )2)1/2, at
(T,arctan{T/[qCdf(T )]}). Part (i) follows.

Restating slightly an intermediate conclusion, the maximizer of ρ +→
ut(arcsinρ) over the domain [−1,1] is −t/[t2+ q2Cdf(t)2]1/2. Under the con-
dition of (iii), for each t ∈ [−T,T ] this falls within the narrower domain
[−R1/2,R1/2]. (iii) follows.

In (ii), ρ2y·w|zx ≤R. To maximize ut(arcsinρ) over a domain that is sym-
metric in t, we again need only consider negative t. For t small enough in
magnitude that t2/[t2 + q2Cdf(t)2] ≤ R, the maximizer of ρ +→ ut(arcsinρ)
over the domain [−1,1] falls inside the narrower domain [−R1/2,R1/2], and
sup−R1/2≤ρ≤R1/2 ut(arcsinρ) = sup−1≤ρ≤1 ut(arcsinρ) = (t2 + q2Cdf(t)2)1/2.

This function is increasing as a function of −t. For t such that R≤ t2/[t2 +
q2Cdf(t)2], because ut(·) is concave unimodal with maximum at a point,
arctan{−t/[qCdf(t)]}, that falls outside of {arcsinρ : |ρ| ≤ R1/2},
sup{ut(arcsinρ) :−R1/2 ≤ ρ≤R1/2}= ut(arcsinR1/2) =−tR1/2+qCdf(t)(1−
R)1/2. This also is increasing as a function of −t. For the unique t < 0 such
that R= t2/[t2+ q2Cdf(t)2], sup{ut(arcsinρ) :−R1/2 ≤ ρ≤R1/2} is given by
either of the two functions of −t, which shows that they coincide at that
point. In consequence, sup{ut(arcsinρ) :−R1/2 ≤ ρ≤R1/2} is increasing as
a function of −t for all t < 0, so that the maximum of ut(arcsinρ) for
|t| ≤ T and ρ2 ≤ R is sup{−tR1/2 + qCdf(t)(1 − R)1/2 : |t| ≤ T} = TR1/2 +
qCdf(T )(1−R)1/2, as required for (ii). [Similar steps yield the minimum of
lt(arcsinρ).] !
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form of a Sweave and a corresponding PDF file.
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