
The Political Methodologist
Newsletter of the Political Methodology Section

American Political Science Association
Volume 18, Number 2, Spring 2011

Editors:
Jake Bowers, University of Illinois at Urbana-Champaign

jwbowers@illinois.edu

Wendy K. Tam Cho, University of Illinois at Urbana-Champaign
wendycho@illinois.edu

Brian J. Gaines, University of Illinois at Urbana-Champaign
bjgaines@illinois.edu

Editorial Assistant:
Ashly Adam Townsen, University of Illinois at Urbana-Champaign

townsen5@illinois.edu

Contents

Notes from the Editors 1

Articles 2

Jake Bowers: Six steps to a Better Relationship
with Your Future Self. 2

Kieran Healy: Choosing Your Workflow Applications 9

Mark M. Fredrickson, Paul F. Testa and Nils B.
Weidmann: Collaboration for Social Scien-
tists, or Software is the Easy Part 19

Shawn Treier: Minimizing the Damage: Convert-
ing LATEX to Word Using TEX2Word 23

Political Analysis 26

Notes From the Editors

This issue of The Political Methodologist is devoted to work
flow, namely how social scientists move from notions to
plans, analyses, and finally reports, and how they can best
ensure that all of their work is well organized, transparent,
and reproducible. These are laudable, but lofty goals. Any-
one who has ever assigned a replication homework knows
that the modal political science article features tables and
figures that cannot be easily reproduced, and often can-
not be closely approximated even with hours of work and
painstaking attention. Sometimes, even with the generous
cooperation of the original author, important details in the
original work remain shrouded in fog. The late David Freed-
man lamented that medical researchers were sticklers about
protocols, but stingy about sharing data, while social sci-
entists were generous with data sets, but hopeless at docu-

menting analysis precisely. The articles in this issue outline
the sketch of a remedy for our discipline’s poor standards
of record keeping and work documentation.

The Sixteenth Century poet and playwright John
Heywood noted, “Many hands make light work.” Alas,
many hands writing together can also breed chaos. Fredrick-
son, Testa, and Weidmann discuss best practices and best
software to minimize logistical hiccups associated with col-
laborative writing. Treier offers sage advice on one partic-
ular task familiar to (and hated by) many TPM readers,
converting TEXfiles to Microsoft Word equivalents at the
behest of a publisher. Healy and Bowers, in separate pieces,
cast their nets more widely still, reviewing tools of various
kinds to reduce errors and to minimize the difficulty of re-
visiting and revising one’s work. Even lone wolves cannot
avoid collaborating with their future selves, and everyone
who has an imperfect memory and/or values time enough
to prefer not having to retrace old footsteps can profit from
taking seriously the ideas they broach.

Also included here is a brief update on recent changes
at Political Analysis from the editors.

Our thanks to all of the contributors to this issue
(only Wendy and Brian thank Jake, who is too reserved to
thank his present-day self). As always, please feel free to
contact the editors with any reactions, suggestions, or ideas
for future issues of TPM.

If you are reading this issue in hardcopy but find
yourself extra interested in, say, subversion or Emacs or
Vim, we encourage you to peruse the pdf version on your
screen. The authors have included hyperlinks throughout
their articles and we reproduce them here.

Enjoy!

The Editors

2 The Political Methodologist, vol. 18, no.2

Articles

Six steps to a better relationship with
your future self.

Jake Bowers
University of Illinois
jwbowers@illinois.edu

Do I contradict myself?
Very well then I contradict myself,
(I am large, I contain multitudes.)
(Whitman, 1855)

An idea is born in a coffee shop, a seminar, a quiet
walk. On this gray day in 2011, the idea dispels February’s
doldrums. The student rushes home, mind racing, the cold
ignored.

This idea inspires a seminar paper in the spring. A
conference paper arises from the seminar paper in collabo-
ration with another student in 2012. A dissertation chapter
descends from the conference paper in 2013. Other disser-
tation chapters take up 2014. A submission to a journal
with the original co-author and a new collaborator happens
in 2015. Revision and resubmission wait until 2017 while
harried editors, reviewers and authors strive to balance re-
search, teaching, service, and life. By now, the three lucky
collaborators work as professors in three different universi-
ties. In 2018 a child is born and a paper is published. The
United Nations takes an interest in the paper in 2019 and
hosts a conference to discuss implications of the research.
In 2020 a first year graduate student in a coffee shop has
an idea that challenges the results in the now famous paper.
She presents her paper at a conference in 2021. What would
happen if the authors had controlled for X? Or included in-
formation now available but missing in 2012? Or chosen a
different likelihood function? Will the United Nations (now
eager to act based the paper) make a wrong move?

The first author convenes a three way video confer-
ence with the other collaborators during his homeward com-
mute after putting his flying car in auto-drive mode.1 The
group must go back to the analyses. Which ones? The ones

from 2011? Or 2012? Or 2018? Where are the files? The
next day, one member of the group who has kept some hard-
drives around out of nostalgia finds some of the files.2 Now
re-analysis should be easy. Right? The student, now profes-
sor, should remember the reason for those bits of code (or
at least should remember which series of mouse clicks were
used to produce the numbers for that crucial table as it was
done in 2011 . . . or was it 2015?). Right? And, of course, the
way Microsoft Word/Stata/SPSS/R/LISREL understands
files and the way that machines in 2021 read and write them
is the same — since Windows and Mac OS X have always
existed and will always continue to exist more or less as they
currently exist. Right? And the group knows exactly which
bit of code produced which table and which figure, right?
And they wrote their code following Nagler’s Maxims (Na-
gler, 1995) and King’s Replication Standard (King, 1995),
right?

If the collaborators find themselves saying “Wrong”
in answer to the questions posed here then reproducing, up-
dating, or changing the original analyses will take a lot of
time. If reproduction is hard to do, then the reputations of
the scholars will suffer and, more importantly, world peace
will have been delayed. This essay provides some sugges-
tions for practices that will make such reproduction occur
much more easily and quickly in the event that famous pa-
pers require special scrutiny. Specifically, this piece aims to
amplify some of what we already ought to know King (1995)
and Nagler (1995), and to add to some of those ideas given
current practices, platforms, and possibilities.

Data analysis is computer programming.

All results (numbers, comparisons, tables, figures) should
arise from code, not from a series of mouse clicks or copy-
ing and pasting. If I wanted to re-create the figure from
2011 but include a new variable or specification, I should be
able to do so with just a few edits to the code rather than
knowledge of how I (or you) used a pointing device in your
graphical user interface some years ago.

Using R (R, 2011), for example, I might specify that

I owe many thanks to Mark Fredrickson, Brian Gaines, Kieran Healy, Kevin Quinn and Cara Wong for direct help on this document and to
Mika LaVaque-Manty and Ben Hansen for many useful discussions on this topic. The source code for this document may be freely downloaded
and modified from https://github.com/jwbowers/workflow

1One assumes that video chatting during manual driving of flying cars will have been outlawed in his state by 2020.
2This is the same guy who still owns cassette tapes and compact discs.
3The command please-plot and some other R functions used in this essay come from the MayIPleaseDoStatistics package which empha-

sizes politeness in data analysis. Functions like please-plot can be blocked and more polite versions such as may-I-please-have-a-plot can
be required using options(politeness=99)

https://github.com/jwbowers/workflow

The Political Methodologist, vol. 18, no. 2 3

the file fig1.pdf was produced by the following commands
in a file called fig1.R.3

#Read the data

thedata <- read.csv("Data/thedata-15-03-2011.csv")

pdf('fig1.pdf') ## begin writing to the pdf file

please-plot(y by x with thedata. red lines please.)

please-add-a-line(using model1)

#Note to self: a quadratic term does not add to the substance

#model2<-please-fit(y by x+x^2 with thedata)

#summary(abs(fitted(model1)-fitted(model2)))

dev.off() ## stop writing to the pdf file

Now, in the future if I wonder how “that plot on page
10” was created, I will know: (1) “that plot” is from a file
called fig1.pdf and (2) fig1.pdf was created in fig1.R. In
a future where R still exists, changing the figure will require
quick edits of commands already written. In a future where
R does not exist, I will at least be able to read the plain
text R commands and use them to write code in my new
favorite statistical computing language: R scripts are writ-
ten in plain text, and plain text is a format that will be
around as long as computer programmers write computer
programs.4

Moreover, realize that file names send messages to
your future self. Name your files with evocative and de-
scriptive names. Your collaborators are less likely to call
you at midnight asking for help if your files are named
inequality-and-protest-figures.R than if your files are
called temp9 or supercalifragilisticexpialidocious. The
extension .R tells us and the operating system that the file
contains R commands. This part of the filename enables us
to quickly search our antique hard drives for files containing
R scripts.

Step 1 If we know the provenance of results, future or
current collaborators can quickly and easily reproduce and
thus change and improve upon the work.

No data analyst is an island for long.

Data analysis involves a long series of decisions. Each deci-
sion requires justification. Some decisions will be too small
and technical for inclusion in the published article itself.
These need to be documented in the code itself (Nagler,
1995). Paragraphs and citations in the publication will jus-
tify the most important decisions. So, one must code to
communicate with yourself and others. There are two main
ways to avoid forgetting the reasons you did something with
data: comment your code and tightly link your code with
your writing.5

Code to communicate: Comment your code.

Comments—unexecuted text inside of a script—are a mes-
sage to collaborators (including your future self) and other
consumers of your work. In the above code chunk, I used
comments to explain the lines to readers unfamiliar with R
and to remember that I had tried a different specification
but decided not to use it because adding the squared term
did not really change the substantive story arising from the
model.6 Messages left for your future self (or near-future
others) help retrace and justify your decisions as the work
moves from seminar paper to conference paper to poster
back to paper to dissertation and onwards.

Notice one other benefit of coding for an audience:
we learn by teaching. By assuming that others will look
at your code, you will be more likely to write clearer code,
or perhaps even to think more deeply about what you are
doing as you do it.

Comment liberally. Comments are discarded when
R runs analysis or LATEX turns plain text into page images,
so only those who dig into your work will see them.

Code to communicate: Literate programming.

Let us change our traditional attitude to the con-
struction of programs: Instead of imagining that
our main task is to instruct a computer what to
do, let us concentrate rather on explaining to
human beings what we want a computer to do.
(Knuth, 1984, p. 97)

Imagine you discover something new (or confirm
something old). You produce a nice little report on your
work for use in discussions of your working group or as
a memo for a web or reviewer appendix. The report it-
self is a pdf file or some other format which displays page
images to ease reading rather than to encourage reanaly-
sis and rewriting. Eventually pieces of that report (tables,
graphs, paragraphs) ought to show up in, or at least inform,
the publishable paper. Re-creating those analyses by point-
ing, clicking, copying, or pasting would invite typing error
and waste time. Re-creating your arguments justifying your
analysis decisions would also waste time. More importantly,
we and others want to know why we did what we did. Such
explanations may not be very clear if we have some pages
of printed code in one hand and a manuscript in the other.
Keep in mind the distinction between the “source code” of a
document (i.e. what computation was required to produce

4Since R is open source, I will also be able to download an old version of R, download an old-fashioned open-source operating system (like Ubuntu
10), and run the old-fashioned statistical computing environment in the old-fashioned operating system in a virtual machine on my new-fashioned
actual machine.

5One can also try the R command put-it-in-my-mind(reason,importance=’high’) to firmly place a reason for a decision into the mind
of the analyst. I myself have not had much luck with this function.

6R considers text marked with # as a comment.

http://en.wikipedia.org/wiki/Plain_text

4 The Political Methodologist, vol. 18, no.2

it) and the visible, type-set page image. Page images are
great for reading, but not great for reproducing or collabo-
rating. The source code of any document exchanged by the
group must be available and executable.

How might one avoid these problems? Literate pro-
gramming is the practice of weaving code into a document —
paragraphs, equations, and diagrams can explain the code,
and the code can produce numbers, figures, and tables (and
diagrams and even equations and paragraphs). Literate pro-
gramming is not merely fancy commenting but is about en-
abling the practice of programming itself to facilitate easy
reproduction and communication.

For example, I just suggested that we know where
“that plot on page 10” comes from by making sure we had
a fig1.pdf file produced from a clearly commented plain
text file called something like fig1.R. An even easier solu-
tion would be to directly include a chunk of code to produce
the figure inside of the paper itself. This paper, for example,
was written in plain text using LATEX markup with R code
chunks to make things like Figure 1. This combination of
LATEX and R is called Sweave (Leisch, 2005).7

This paper, for example, was written in plain text using \LaTeX

markup with R code chunks to make things like

Figure~\ref{fig:giniprot}. This combination of \LaTeX and R is

called Sweave \citep{Leis:2005}.\footnote{Support for Sweave is

included with R.}

\begin{figure}[h]

\centering

<<fig1plot,fig=TRUE>>=

Make a scatterplot of Protest by Inequality

with(good.df,plot(gini04,protac00,xlab='Gini Coefficient 2004',
ylab='Mean Protest Activities\n(World Values Survey 1980-2000)'))
Label a few interesting points

with(good.df[c("EGY","JOR","USA","SWE","CHL"),],

text(gini04,protac00,labels=Nation))

@

\caption{Protest activity by income inequality Norris (2009)}.}

\label{fig:giniprot}

\end{figure}

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

0.25 0.35 0.45 0.55

0.
0

0.
5

1.
0

1.
5

Gini Coefficient 2004 (UNDP)

M
ea

n
Pr

ot
es

t A
ct

iv
iti

es
(W

or
ld

 V
al

ue
s

Su
rv

ey
 1

98
0−

20
00

)

Egypt

Jordan

United States

Sweden

Chile

Figure 1: Protest activity by income inequality (Norris,
2009).

By using \label{fig:giniprot}, I do not need to keep
track of the figure number, nor do extra work when I reorga-
nize the document in response to reviewer suggestions. Nor
do I need a separate fig1.R file or fig1.pdf file. Tables and
other numerical results are also possible to generate within
the source code of a scholarly paper. Those who view the
code for this essay will see how Table 1 was also generated
directly from a regression object.8

Coef SE 95% CI

Intercept 1.5 0.2 1.2 1.8
Income Inequality

(lower=more equal) −1.0 0.4 −1.9 −0.2
Mean Political Rights

(lower=more rights) −0.2 0.0 −0.2 −0.1
n: 53, resid.sd: 0.28, R2: 0.57

Table 1: People living in countries with unequal income dis-
tributions report less protest activity to World Values Sur-
vey interviewers than people living in countries with rela-
tively more equal income distributions, adjusting for average
political rights as measured by Freedom House 1980–2000.
Data from (Norris, 2009).

Literate data analysis is not the same as Sweave, even
if Sweave is a nice implementation.9 LyX offers a WYSI-
WYG environment for LATEX that supports Sweave. And
the odfWeave package in R allows the use of OpenOffice doc-
uments in exactly the same way.10 If your workflow does not
involve LATEX and R, you can still implement some of the
principles here. Imagine creating a style in Microsoft Word
called “code” which hides your code when you print your
document, but which allows you to at least run each code
chunk piece by piece [or perhaps there are ways to extract
all text of style “code” from a Microsoft Word document].
Or imagine just using some other kind of indication linking
paragraphs to specific places in code files. There are many
ways that creative people can program in a literate way.

Literate programming need not go against the prin-
ciple of modular data analysis (Nagler, 1995). In my own
work I routinely have several different Sweave files that ful-
fill different functions, some of them create LATEX code that
I can \input into my main.tex file, others setup the data, run
simulations, or allow me to record my journeys down blind
alleys. Of course, when we have flying cars running on au-
topilot, perhaps something other than Sweave will make our
lives even easier. Then we’ll change.

Step 2 We analyze data in order to explain something
about the world to other scholars and policy makers. If we

7Support for Sweave is included with R.
8Beck (2010) inspired this particular presentation of a linear model.
9The R project has a task view devoted to reproducible research listing many of the different approaches to literate programming for R.

10A quick Google search of “Sweave for Stata” turned up lots of resources for literate programming with Stata.

http://en.wikipedia.org/wiki/Literate_programming
http://en.wikipedia.org/wiki/Literate_programming
http://www.lyx.org/
http://cran.r-project.org/web/views/ReproducibleResearch.html

The Political Methodologist, vol. 18, no. 2 5

focus on explaining how we got our computers to do data
analysis to human beings, we will do a better job with the
data analysis itself: we will learn as we focus on teaching,
and we will avoid errors and save time as we ensure that
others (including our future selves) can retrace our steps. A
document than can be “run” to reproduce all of the analyses
also instills confidence in readers and can more effectively
spur discussion and learning and cumulation of research.

Meaningful code requires data.

All files containing commands operating on data must re-
fer to a data file. A reference to a data file is a line of
code the analysis program will use to operate on (“load”/
“open” / “get” / “use”) the data file. One should not
have to edit this line on different computers or platforms
in order to execute this command. Using R, for exam-
ple, all analysis files should have load('thedata.rda') or
read.csv('thedata.csv') or some equivalent line in them,
and thedata.csv should be stored in some place easy to
find (like in the same directory as the file or perhaps in
'Data/thedata.rda'). Of course, it never hurts to drop in a
comment pointing to the data file.

Where should one store data files? An obvious so-
lution is always to make sure that the data file used by a
command file is in the same directory as the command file.
More elegant solutions require all co-authors to have the
same directory structure so that load('Data/thedata.rda')
means the same thing on all computers used to work on the
project. This kind of solution is one of the things that for-
mal version control systems do well (as discussed a bit more
in the next section).

The principle of modularity suggests that you sep-
arate data cleaning, processing, recoding, and merging
from analysis in different files (Nagler, 1995). So, per-
haps your analysis oriented files will load('cleandata.rda')
and a comment in the code will alert the future
you (among others) that cleandata.rda was created
from create-cleandata.R which in turn begins with
read.csv(\url('http://data.gov/dirtydata.csv')). Such a
data processing file will typically end with something like
save('cleandata.rda') so that we are doubly certain about
the provenance of the data.11

Now, if in the future we wonder where cleandata.rda

came from, we might search for occurrences of ‘cleandata’
in the files on our system. However, if such searching among
files is a burden, an even nicer solution is to maintain a file
for each project called “MANIFEST.txt” or “INDEX.txt”
or “README.txt” which lists the data and command files

with brief descriptions of their functions and relations.

Step 3 We should know where the data came from and
what operations were performed on which set of data.

In the good old days, when we executed our LISREL
code in batch mode, we had no choice but to tell the ma-
chine clearly, in a few easy to understand and informative
lines, what files (with filenames no longer than 8 characters)
to use:

DA NI=19 NO=199 MA=CM

LA=basic.lab

CM FI=basic.cov

The fact that I need to articulate this idea at all
arises because of graphical user interfaces: it is all too easy
to use the mouse to load a data file into memory and then
to write a script to analyze this file without ever noting the
actual name or location of the data file.

Version control prevents clobbering and rec-
onciles history.

Group work requires version control.12 Many people are
familiar with the “track changes” feature in modern WYSI-
WYG word processors or the fact that Dropbox allows one
to recover previous versions of files. These are both kinds
of version control. More generally, when we collaborate,
we’d like to do a variety of actions with our shared files.
Collaboration on data analytic projects is more productive
and better when (1) it is easy to see what has changed be-
tween versions of files; (2) members of the team feel free to
experiment and then to dump parts of the experiment in
favor of previous work while merging the successful parts
of the experiment into the main body of the paper; (3) the
team can produce have “releases” of the same document
(one to MPSA, one to APSR, one to your parents) without
spawning many possibly conflicting copies of the same doc-
ument; (4) people can work on the same files at the same
time without conflicting with one another (and can reconcile
their changes without too much confusion and clobbering).
Clobbering is what happens when your future self or your
current collaborator saves an old version of a file over a new
version, erasing good work by accident.

Of course if you rely on Dropbox or “track changes”
for version control, you must communicate with other folks
in your group before you edit existing files. Only one of
you can edit and save a given file at a time. This prevents
your work (or your colleagues work) from getting lost when
you both try to save the same file on top of each other.

11Of course, if you need math or paragraphs to explain what is happening in these files, you might prefer to make them into Sweave files, for
which the conventional extension is .Rnw. So you’d have create-cleandata.Rnw which might explain and explore the different coding decisions
you made, perhaps involving a factor analysis and diagnostic plots.

12Fredrickson et al. (2011) and Healy (2011) in this issue also explain what version control is and why we might want to use it.

6 The Political Methodologist, vol. 18, no.2

If you find that you need to work on the same files at the
same time, then you should work on establishing your own
shared version control system. Free options include launch-
pad, github, sourceforge for open source projects (i.e. pa-
pers you are writing which you are happy to share with
others as you write). Each of those services include paid
versions too. One may also use Dropbox as a kind of server
for version control: for example, one may copy files from
the Dropbox directory into a local working directory so as
to avoid clobbering and then work on merging changes by
hand before copying back to the Dropbox directory and re-
placing existing files.

We use subversion with our own research group, and
I use it for all of my own projects (except this one, for which
I am experimenting with git). Subversion and bazaar and
git are all great. They mainly differ in the extent to which
you need to run a server. Subversion requires a server.13

Of course, one may take advantage of many of the
benefits of formal version control systems with some dis-
ciplined systems for file and directory organization. An
excellent, simple, and robust version control system is to
rename your files with the date and time of saving them:
thedoc.tex becomes thedoc25-12-2011-23:50.tex. Be sure to
include year in the file names — remember, the life of an idea
is measured in years. If you are wise enough to have saved
your documents as plain text then you can easily compare
documents using the many utilities available for comparing
text files.14 When you reach certain milestones you can re-
name the file accordingly: thedocAPSA2009.tex — for the
one sent to discussants at APSA — or thedocAPSR2015.tex
— for the version eventually sent to the APSR six years af-
ter you presented it at APSA. The formal version control
systems I mentioned above all allow this kind of thing and
are much more elegant and capable, but you can do it by
hand too as long as you don’t mind taking up a lot of disk
space and having many “thedoc...” files around. If you do
version control by hand, spend a little extra time to ensure
that you do not clobber files when you make mistakes typing
in the file-names. And, if you find yourself spending extra
time reconciling changes made by different collaborators by
hand, remember this is a task that modern version control
systems take care of quickly and easily.

Step 4 Writing is rewriting. Thus, all writing involves
versions. When we collaborate with ourselves and others
we want to avoid clobbering and we want to enable graceful

reconciliation of rewriting. One can do these things with
formal systems of software (like subversion or git or bazaar)
or with formal systems of file naming, file comparing, and
communication or, even better, with both. In either case,
plain text files will make such tasks easier, will take up less
disk space, and be easier to read for the future you.

Minimize error by testing.

Now, back to that famous article of 2018. After reading the
conference paper critique of 2021 (that came from the semi-
nar paper of 2020), the statisticians at the UN worry about
the bootstrap confidence intervals presented in the original
paper.15 So, now the authors would like to evaluate their
bootstrap procedure. Although nice code exists for boot-
strapping linear models, no nice code exists to bootstrap
the bootstrap. Of course, the code required is not complex,
but since they are writing custom code they worry about
getting it right. As they’ve struggled to respond to the cri-
tiques of their paper, they’ve had lots of time to appreciate
problems arising from bugs, errors, and typos in data anal-
ysis and code.

Now, if they had a moment to think in between teach-
ing that new class, reading books for an awards committee,
evaluating application files for the admissions committee,
feeding popsicles to a sick child, and undertaking the odd
bit of research, they might say to themselves, “Before I write
new code, I should write a test of the code. I should write a
little bit of code that lets me know that my double-bootstrap
procedure actually does what it is supposed to do.”

Of course, this idea, like most others, is not new.
The desire to avoid error looms large when large groups of
programmers write code for multi-million dollar programs.
The idea of test driven development and the idea that one
ought to create tests of small parts of one’s code arose to
address such concerns. For the social scientist collaborating
with her future self and/or a small group of collaborators,
here is an example of this idea in a very simple form: Say I
want to write a function to multiply a number by 2. If my
function works, when I give it the number 4, I should see it
return the number 8 and when I give it -4, I should get -8.

The test function:

test.times.2.fn <- function(){

This function tests times.2.fn

if (times.2.fn(thenumber=4) == 8 &

times.2.fn(thenumber=-4) == -8) {

13If you already pay to host a website, you may already have the right to run a subversion or git server there. Your university or institute may
have a version control system running somewhere on campus. And Google will direct you to many helpful people who have installed such servers
on their own diverse desktop machines. Github requires that you pay to host private repositories.

14Adobe Acrobat allows one to compare differences in pdf files. OpenOffice supports a “Compare Documents” option. And Google Docs will
report on the version history of a document.

15Perhaps they should be worried about the deeper substantive critiques offered by the student, but they are statisticians and so focus on the
stats. The policy makers of 2021 were cowed by the methodological virtuosity of the 2018 article, and so, even though they had the same substantive
concerns as the student, they kept their mouths shut at the mini-conference to avoid looking dumb in front of their bosses.

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Unit_testing

The Political Methodologist, vol. 18, no. 2 7

print("It works!")

} else { print("It does not work!")

}

}

The function:

times.2.fn <- function(thenumber){

This function multiplies a scalar number by 2

thenumber is a scalar number

thenumber+2

}

Use the test function

test.times.2.fn()

[1] "It does not work!"

Ack! I mistyped “+” for “*”. Good thing I wrote the test!16

Step 5 No one can forsee all of the ways that a computer
program can fail. One can, however, at least make sure that
it succeeds in doing the task motivating the writing of the
code in the first place.

Copy and improve on others’ examples.

Lots of people are thinking about “reproducible research”
and “literate programming” these days. Google those terms.
Of course, the devil is in the details: Here I list a few of my
own attempts at enabling reproducible research. You’ll find
many other inspiring examples on the web. Luckily, the
open source ethos aligns nicely with academic incentives,
so we are beginning to find more and more people offering
their files online for copying and improvement. By the way,
if you do copy and improve, it is polite to alert the person
from whom you made the copy about your work.

I have experimented with three systems so far: (1) for
one paper we simply included a Sweave document and data
files into a compressed archive Bowers and Drake (2005); (2)
for another more computing intensive paper we assembled a
set of files that enabled reproduction of our results using the
make system (Bowers et al., 2008); and (3) recently I have
tried the “compendium” approach (Gentleman, 2005; Gen-
tleman and Temple Lang, 2007) which embeds an academic
paper within the R package system Bowers (2011). The
benefit of this last approach is that one is not required to
have access to a command line for make: the compendium is
downloadable from within R using install.packages() and
is viewable using the vignette() function in any operating
system than runs R.17 The idea that one ought to be able
to install and run and use an academic paper just as one

installs and uses statistical software packages is very attrac-
tive, and I anticipate that it will become ever easier to turn
papers into R packages as creative and energetic folks turn
their attention to the question of reproducible research.

Step 6 We all learn by doing. When we share reproduc-
tion materials we improve both cumulation of knowledge
and our methods for doing social science (Freese, 2007;
King, 1995). As we copy and improve upon each other’s
modes of doing work we enhance our collective ability to
believe each other and for future scholars to believe us, too.

Remember that research ought to be credi-
ble communication.

[I]f the empirical basis for an article or book can-
not be reproduced, of what use to the discipline
are its conclusions? What purpose does an arti-
cle like this serve? (King, 1995)

We all always collaborate. Many of us collaborate
with groups of people at one moment in time as we race
against a deadline. All of us collaborate with ourselves over
time.18 The time-frames over which collaboration are re-
quired — whether among a group of people working together
or within a single scholar’s productive life or probably both
— are much longer than any given version of any given soft-
ware will easily exist. Plain text is the exception. Thus,
even as we extol version control systems, one must have a
way to ensure future access to them in a form that will still
be around when sentient cockroaches finally join political
science departments (by then dominated by cetaceans after
humans are mostly uploads).19

But what if the UN never hears of your work, or, by
some cruel fate, your article does not spawn debate? Why
then would you spend time to communicate with your future
self and others? My own answer to this question is that I
want my work to be credible and useful to myself and other
scholars even if each article does not immediately change
the world. What I report in my data analyses should have
two main characteristics: (1) the findings of the work should
not be a matter of opinion; and (2) other people should be
able to reproduce the findings. That is, the work represents
a shared experience — and an experience shared without
respect to the identities of others (although requiring some
common technical training and research resources).

16A more common example of this kind of testing occur everyday when we recode variables into new forms but look at a crosstab of the old vs.
new variable before proceeding.

17Notice that my reproduction archives and/or instructions for using them are hosted on the Dataverse, which is another system designed to
enhance academic collaboration across time and space.

18What is a reasonable time-span for which to plan for self-collaboration on a single idea? Ask your advisers how long it took them to move
from idea to dissertation to publication.

19The arrival of the six-legged social scientists revives Emacs and finally makes Ctrl-a Ctrl-x Esc-x Ctrl-c a reasonable key combination.

http://thedata.org/book/learn-about-project
http://kieran.healy.usesthis.com/

8 The Political Methodologist, vol. 18, no.2

Assume we want others to believe us when we say
something. More narrowly, assume we want other people
to believe us when we say something about data: “data”
here can be words, numbers, musical notes, images, ideas,
etc . . . The point is that we are making some claims about
patterns in some collection of stuff. Now, it might be easy
to convince others that “this collection of stuff is different
from that collection of stuff” if those people were looking
over our shoulders the whole time that we made decisions
about collecting the stuff and broke it up into understand-
able parts and reorganized and summarized it. Unfortu-
nately, we can’t assume that people are willing to shadow a
researcher throughout her career. Rather, we do our work
alone or in small groups and want to convince other distant
and future people about our analyses.

Now, say your collections of stuff are large or complex
and your chosen tools of analyses are computer programs.
How can we convince people that what we did with some
data with some program is credible, not a matter of whim
or opinion, and reproducible by others who didn’t shadow
us as we wrote our papers? This essay has suggested a few
concrete ways to enhance the believability of such schol-
arly work. In addition, these actions (as summarized in the
section headings of this essay) make collaboration within
research groups more effective. Believability comes in part
from reproducibility and researchers often need to be able
to reproduce in part or in whole what different people in the
group have done or what they, themselves, did in the past.

In the end, following these practices and those rec-
ommended by Fredrickson et al. (2011) and Healy (2011) in
this issue allows your computerized analyses of your collec-
tions of stuff to be credible. Finally, if the UN quibbles with
your analyses, your future self can shoot them the archive
required to reproduce your work.20 You can say, “Here is
everything you need to reproduce my work.” To be extra
helpful you can add “Read the README file for further in-
structions.” And then you can get on with your life: maybe
the next great idea will occur when your 4-year-old asks a
wacky question after stripping and painting her overly co-
operative 1-year-old brother purple, or teaching a class, or
in a coffee shop, or on a quiet walk.

References

Beck, Nathaniel. 2010. “Making Regression and Re-
lated Output More Helpful to Users.” The Political
Methodologist 18 (1): 4–9.

Bowers, Jake. 2011. “Reproduction Compendium for:
‘Making Effects Manifest in Randomized Experi-
ments’.” http://hdl.handle.net/1902.1 /15499.

Bowers, Jake and Katherine W. Drake. 2005. “Re-
production Archive for:‘EDA for HLM: Visu-
alization when Probabilistic Inference Fails’.”
http://hdl.handle.net/1902. 1/13376.

Bowers, Jake, Ben B. Hansen and Mark M. Fredrickson.
2008. “Reproduction Archive for: ‘Attributing Ef-
fects to A Cluster Randomize Get-Out-The-Vote
Campaign’.” http://hdl.handle.net/1902.1/12174.

Freese, Jeremy. 2007. “Replication Standards for Quantita-
tive Social Science: Why Not Sociology?” Sociologi-
cal Methods & Research 36 (2):158–72.

Gentleman, Robert. 2005. “Reproducible Research: A
Bioinformatics Case Study.” Statistical Applications
in Genetics and Molecular Biology 4 (1): 1034.

Gentleman, Robert and Duncan Temple Lang. 2007. “Sta-
tistical Analyses and Reproducible Research.” Jour-
nal of Computational and Graphical Statistics 16 (1):
1–23.

King, Gary 1995. “Replication, Replication.” PS: Political
Science and Politics 28 (3): 444–52.

Knuth, Donald E. 1984. “Literate Programming.” The
Computer Journal 27 (2): 97–111

Leisch, Friedrich. 2005. Sweave User Manual.

Nagler, Jonathan. 1995. “Coding Style and Good Comput-
ing Practices.” PS: Political Science and Politics 28
(3): 488–92.

Norris, Pippa. 2009. Crossnational Data Release 3.0
http://www.hks.harvard.edu/fs/pnorris/Data/Data.htm.

R: A Language and Environment for Statistical Computing.
2011. R Development Core Team at the R Foun-
dation for Statistical Computing http://www.R-
project.org.

Whitman, Walt. 1855. “Leaves of Grass.” Song of Myself.
Project Gutenburg [2008], p. 51.

20Since you used plain text, the files will still be intelligible, analyzed using commented code so that folks can translate to whatever system
succeeds R, or since you used R, you can include a copy of R and all of the R packages you used in your final analyses in 2018 in the archive itself.
You can even throw in a copy of Ubuntu 10 and an open source virtual machine running the whole environment.

http://hdl.handle.net/1902.1/15499
http://hdl.handle.net/1902.1/13376
http://hdl.handle.net/1902.1/12174
http://www.hks.harvard.edu/fs/pnorris/Data/Data.htm
http://www.R-project.org
http://www.R-project.org

The Political Methodologist, vol. 18, no. 2 9

Choosing Your Workflow Applications

Kieran Healy
Duke University
kjhealy@soc.duke.edu

Introduction

You can do productive, maintainable and reproducible work
with all kinds of different software set-ups. This is the main
reason I don’t go around encouraging everyone to convert
to the applications I use. (My rule is that I don’t try to per-
suade anyone to switch if I can’t commit to offering them
technical support during and after their move.) So this dis-
cussion is not geared toward convincing you there is One
True Way to organize things. I do think, however, that if
you’re in the early phase of your career as a graduate stu-
dent in, say, Sociology, or Economics, or Political Science,
you should give some thought to how you’re going to orga-
nize and manage your work.1 This is so for two reasons.
First, the transition to graduate school is a good time to
make changes. Early on, there’s less inertia and cost associ-
ated with switching things around than there will be later.
Second, in the social sciences, text and data management
skills are usually not taught to students explicitly. This
means that you may end up adopting the practices of your
advisor or mentor, continue to use what you are taught in
your methods classes, or just copy whatever your peers are
doing. Following these paths may lead you to an arrange-
ment that you will be happy with. But maybe not. It’s
worth looking at the options.

Two remarks at the outset. First, because this dis-
cussion is aimed at beginning students, some readers may
find much with which they are already familiar. Even so,
some sections may still be of interest, as I have tried to keep
the software references quite current. Second, although in
what follows I advocate you take a look at several appli-
cations in particular, it’s not really about the gadgets or
utilities. The Zen of Organization is Not to be Found in
Fancy Software. Nor shall the true path of Getting Things
Done be revealed to you through the purchase of a nice
Moleskine Notebook. Instead, it lies within—unfortunately.

Just Make Sure You Know What You Did

For any kind of formal data analysis that leads to a schol-
arly paper, however you do it, there are some basic princi-
ples to adhere to. Perhaps the most important thing is to
do your work in a way that leaves a coherent record of your
actions. Instead of doing a bit of statistical work and then

just keeping the resulting table of results or graphic that
you produced, for instance, write down what you did as a
documented piece of code. Rather than figuring out but
not recording a solution to a problem you might have again,
write down the answer as an explicit procedure. Instead of
copying out some archival material without much context,
file the source properly, or at least a precise reference to it.

Why should you bother to do any of this? Because
when you inevitably return to your table or figure or quo-
tation nine months down the line, your future self will have
been saved hours spent wondering what it was you thought
you were doing and where you got that result from.

A second principle is that a document, file or folder
should always be able to tell you what it is. Beyond making
your work reproducible, you will also need some method for
organizing and documenting your draft papers, code, field
notes, datasets, output files or whatever it is you’re working
with. In a world of easily searchable files, this may mean
little more than keeping your work in plain text and giving
it a descriptive name. It should generally not mean invest-
ing time creating some elaborate classification scheme or
catalog that becomes an end in itself to maintain.

A third principle is that repetitive and error-prone
processes should be automated if possible. (Software de-
velopers call this “DRY”, or Don’t Repeat Yourself.) This
makes it easier to check for and correct mistakes. Rather
than copying and pasting code over and over to do basi-
cally the same thing to different parts of your data, write
a general function that can be called whenever it’s needed.
Instead of retyping and reformatting the bibliography for
each of your papers as you send it out to a journal, use
software that can manage this for you automatically.

There are many ways of implementing these princi-
ples. You could use Microsoft Word, Endnote and SPSS.
Or Textpad and Stata. Or a pile of legal pads, a calculator,
a pair of scissors and a box of file folders. Still, software
applications are not all created equal, and some make it
easier than others to do the Right Thing. For instance, it
is possible to produce well-structured, easily-maintainable
documents using Microsoft Word. But you have to use its
styling and outlining features strictly and responsibly, and
most people don’t bother. You can maintain reproducible
analyses in SPSS, but the application isn’t set up to do this
automatically or efficiently, nor does its design encourage
good habits. So, it is probably a good idea to invest some
time learning about the alternatives. Many of them are free
to use or try out, and you are at a point in your career
where you can afford to play with different setups without
too much trouble.

I thank Jake Bowers for helpful comments.
1This may also be true if you are about to move from being a graduate student to starting as a faculty member, though perhaps the rationale

is less compelling given the costs.

http://www.moleskineus.com/
http://en.wikipedia.org/wiki/Don't_repeat_yourself

10 The Political Methodologist, vol. 18, no.2

What Sort of Computer Should You Use?

The earliest choice you will face is buying your computer
and deciding what operating system to run on it. The lead-
ing candidates are Microsoft Windows, Apple’s Mac OS X,
and some distribution of Linux. Each of these platforms has
gone some of the way—in some cases a long way—toward
remedying the main defects stereotypically associated with
it. I would characterize the present state of things this way:

• Windows dominates the market. Because of this, far
more viruses and malware target Windows than any
other OS. Long-standing design and usability prob-
lems have been somewhat ameliorated in recent years.
The previous major version, Windows Vista, was not
very popular, though its main problems were not pri-
marily related to security. Its successor, Windows 7,
is generally accepted to be a solid improvement.

• Mac OS X runs only on computers made by Apple (the
existence of “hackintoshes” notwithstanding). Unlike
in the past, Apple computers today have the same ba-
sic hardware as computers that run Windows. This
has two consequences for those considering Mac OS
X. First, one can now make direct price comparisons
between Apple computers and PC alternatives (such
as Dells, Lenovos, etc). In general, the more similarly
kitted-out a PC is to an Apple machine, the more the
price difference between the two goes away.2 However,
Apple does not compete at all price-points in the mar-
ket, so it will always be possible to configure a cheaper
PC (with fewer features) than one Apple sells. For the
same reason, it is also easier to find a PC configura-
tion precisely tailored to some particular set of needs
or preferences (e.g., with a better display but without
some other feature or other) than may be available
from Apple.

Second, because Apple now runs Intel-based hard-
ware, installing and running Windows is easy, and
even catered to by Mac OS’s Boot Camp utility. Be-
yond installing OS X and Windows side-by-side, third-
party virtualization software is available (for about
$80 from VMWare or Parallels, or free from Virtual-
Box) that allows you to run Windows or Linux seam-
lessly within OS X. Thus, Apple hardware is the only
setup where you can easily try out each of the main
desktop operating systems.

• Linux is stable, secure, and free. User-oriented dis-
tributions such as Ubuntu are much better-integrated
and well-organized than in the past. The user environ-
ment is friendlier now. Installing, upgrading and up-

dating software—a key point of frustration and time-
wasting in older Linux distributions—is also much bet-
ter than it used to be, as Linux’s package-management
systems have matured. It remains true that Linux
users are much more likely to be forced at some point
to learn more than they might want to about the guts
of their operating system.

These days, I use Mac OS X, and the discussion here
reflects that choice to some extent. But the other two op-
tions are also perfectly viable alternatives, and most of the
applications I will discuss are freely available for all of these
operating systems.

The dissertation, book, or articles you write will gen-
erally consist of the main text, the results of data analysis
(perhaps presented in tables or figures) and the scholarly ap-
paratus of notes and references. Thus, as you put a paper
or an entire dissertation together you will want to be able
to easily edit text, analyze data and minimize error. In the
next section I describe some applications and tools designed
to let you do this easily. They fit together well (by design)
and are all freely available for Windows, Linux and Mac OS
X. They are not perfect, by any means — in fact, some of
them can be awkward to learn. But graduate-level research
and writing can also be awkward to learn. Specialized tasks
need specialized tools and, unfortunately, although they are
very good at what they do, these tools don’t always go out
of their way to be friendly.

Edit Text

If you are going to be doing quantitative analysis of any
kind then you should write using a good text editor. The
same can be said, I’d argue, for working with any highly
structured document subject to a lot of revision, such as a
scholarly paper. Text editors are different from word pro-
cessors. Unlike applications such as Microsoft Word, text
editors generally don’t make a big effort to make what you
write look like as though it is being written on a printed
page.3 Instead, they focus on working with text efficiently
and assisting you with visualizing the logical structure of
what you’re writing. If you are writing code to do some
statistical analysis, for instance, then at a minimum a good
editor will highlight keywords and operators in a way that
makes the code more readable. Typically, it will also pas-
sively signal to you when you’ve done something wrong syn-
tactically (such as forget a closing brace or semicolon or
quotation mark), and automagically indent or tidy up your
code as you write it. If you are writing a scholarly paper
or a dissertation, a good text editor can make it easier to
maintain control over the structure of your document, and

2Comparisons should still take account of remaining differences in hardware design quality, and of course the OS itself.
3For further argument about the advantages of text-editors over word processors see Allin Cottrell’s polemic, “Word Processors: Stupid and

Inefficient.”

http://www.vmware.com/products/fusion/
http://www.parallels.com/
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.ubuntu.com/
http://en.wiktionary.org/wiki/automagical
http://www.ecn.wfu.edu/~cottrell/wp.html
http://www.ecn.wfu.edu/~cottrell/wp.html

The Political Methodologist, vol. 18, no. 2 11

help ensure that cross-references and other paraphernalia
are correct. Just as the actual numbers are crunched by
your stats program—not your text editor—the typesetting
of your paper is handled by a specialized application, too.
Perhaps more importantly, a text editor manipulates plain
text as opposed to binary file formats like .doc or .pdf, and
plain text is the easiest format to manage, control, back up,
and come back to later with some other application.

Emacs is a text editor, in the same way the blue
whale is a mammal. Emacs is very powerful, and can
become almost a complete working environment in itself,
should you so wish. (I don’t really recommend it.) Com-
bining Emacs with some other applications and add-ons
(described below) allows you to manage writing and data-
analysis effectively. The Emacs Homepage has links to Win-
dows and Linux versions. The two most easily available ver-
sions on the Mac are GNU Emacs itself and Aquamacs. The
former is the “purest” version of Emacs and does not im-
plement many Mac conventions out of the box. The latter
makes an effort to integrate Emacs with the Mac OS. For
Windows users who would like to use Emacs, the developers
maintain an extensive FAQ including information on where
to download a copy and how to install it.

While very powerful and flexible, Emacs is not par-
ticularly easy to learn. Indeed, to many first-time users
(especially those used to standard applications on Windows
or Mac OS) its conventions seem bizarre and byzantine. As
applications go, Emacs is quite ancient: the first version
was written by Richard Stallman in the 1970s. Because
it evolved in a much earlier era of computing (before de-
cent graphical displays, for instance, and possibly also fire),
it doesn’t share many of the conventions of modern appli-
cations.4 Emacs offers many opportunities to waste your
time learning its particular conventions, tweaking its set-
tings, and generally customizing it. There are several good
alternatives on each major platform, and I discuss some of
them below.

At this point it’s reasonable to ask why I am even
mentioning it, let alone recommending you try it. The an-
swer is that, despite its shortcomings, Emacs is nevertheless
very, very good at managing the typesetting and statistics
applications I’m about to discuss. It’s so good, in fact, that
Emacs has recently become quite popular amongst a set
of software developers pretty much all of whom are much
younger than Emacs itself. The upshot is that there has

been a run of good, new resources available for learning it
and optimizing it easily. Meet Emacs, a screencast available
for purchase from PeepCode, walks you through the basics
of the application. Emacs itself also has a built-in tutorial.

If text editors like Emacs are not concerned with
formatting your documents nicely, then how do you pro-
duce properly typeset papers? You need a way to take the
text you write and turn it into a presentable printed (or
PDF) page. This is what LATEX is for. LATEX is a freely-
available, professional-quality typesetting system. It takes
text marked up in a way that describes the structure and
formatting of the document (where the sections and subsec-
tions are, for example, or whether text should be in bold
face or emphasized) and typesets it properly. If you have
ever edited the HTML of a web page, you’ll know the gen-
eral idea of a markup language. If you haven’t, the easiest
way to understand what I mean is to look at a segment of
LATEX markup. An example is shown in Listing 1. You can
get started with LATEX for Mac OS X by downloading the
MacTeX distribution. On Windows, ProTeXt and MiKTeX
are both widely-used. Linux vendors have their own distri-
butions, or you can install TeXLive yourself.5

\subsection{Edit Text}

This is what \textbf{LaTeX} is for. LaTeX is a

freely-available, professional-quality typesetting

system. It takes text marked up in a way that

describes the structure and formatting of the

document (where the sections and subsections are,

for example, or whether text should be \textbf{in

bold face} or \emph{emphasized}) and typesets it

properly. If you have ever edited the HTML of a

web page, you'll know the general idea of a markup

language. If you haven't, the easiest way to

understand what I mean is to look at a segment of

LaTeX markup. An example is shown in Listing

\ref{lst:latex}.

Listing 1: Part of the LATEX source for an earlier version of
this document.

LATEX works best with some tools that help you take
full advantage of it with a minimum of fuss. You can manage
bibliographical references in LATEX documents using Bib-
TeX. It does the same job as Endnote, the commercial
plug-in for managing references in Microsoft Word. BibTeX
comes with any standard LATEX installation. Whichever text
editor or word processor you use, you should strongly con-
sider some kind of reference-manager software for your bib-
liographies. It saves a tremendous amount of time because

4One of the reasons that Emacs’ keyboard shortcuts are so strange is that they have their roots in a model of computer that laid out its
command and function keys differently from modern keyboards. It’s that old.

5For more about these distributions of TEX, see the LATEX project page. The proliferation of “-TEX” acronyms and names can be confusing
to newcomers, as they may refer to a distribution of an entire TEX/LATEX platform (as with MikTeX or MacTeX), or to a particular program or
utility that comes with these distributions (such as BibTeX, for dealing with bibliographies), or to some bit of software that allows something else
to work with or talk to the TEX system.

6If you plan to use BibTeX to manage your references, take a look at BibLaTeX, a package by Philipp Lehman, together with Biber, a replace-
ment for BibTeX. BibLaTeX and Biber are not yet officially stable, but they are very well-documented, in wide use, and will soon jointly replace
BibTeX as the standard way to process bibliographies in LATEX. I recommend you use them instead of older configurations (such as BibTeX and

http://www.gnu.org/software/emacs/
http://emacsformacosx.com/
http://aquamacs.org/
http://www.gnu.org/software/emacs/windows/faq.html
http://peepcode.com/products/meet-emacs
http://tug.org/mactex/
http://tug.org/mactex/
http://www.tug.org/protext/
http://www.miktex.org/
http://www.tug.org/texlive
http://www.endnote.com/
http://www.latex-project.org/ftp.html
http://www.ctan.org/tex-archive/help/Catalogue/entries/biblatex.html
http://biblatex-biber.sourceforge.net/

12 The Political Methodologist, vol. 18, no.2

you can easily switch between bibliographical formats, and
you don’t have to worry whether every item referenced in
your dissertation or paper is contained in the bibliography.6

AUCTeX and RefTeX are available for Emacs. These
packages allow Emacs to understand the ins-and-outs of
typesetting LATEX documents, color-coding the marked-up
text to make it easier to read, providing shortcuts to La-
TeX’s formatting commands, and helping you manage ref-
erences to Figures, Tables and bibliographic citations in the
text. These packages could also be listed under the “Min-
imize Error” section below, because they help ensure that
your references and bibliography will be complete and con-
sistently formatted.7

More information on Emacs and LATEX is readily
available via Google, and there are several excellent books
available to help you get started. Kopka and Daly (2003)
and Mittlebach et al. (2004) are good resources for learning
LATEX.

Analyze Data and Present Results

You will probably be doing some—perhaps a great deal—of
quantitative data analysis. R is an environment for statis-

tical computing. It’s exceptionally well-supported, contin-
ually improving, and has a very active expert-user commu-
nity who have produced many add-on packages. R has the
ability to produce sophisticated and high-quality statistical
graphics. The documentation that comes with the software
is complete, if somewhat terse, but there are a large number
of excellent reference and teaching texts that illustrate its
use. These include Dalgaard (2002); Venables and Ripley
(2002); Maindonald and Braun (2003); Fox (2002); Har-
rell (2001), and Gelman and Hill (2007). Although it is a
command-line tool at its core, it has a good graphical in-
terface as well. You can download it from The R Project
Homepage.

R can be used directly within Emacs by way of a
package called ESS (for “Emacs Speaks Statistics”). As
shown in Figure 1, it allows you to work with your code
in one Emacs frame and a live R session in another right
beside it. Because everything is inside Emacs, it is easy to
do things like send a chunk of your code over to R using a
keystroke. This is a very efficient way of doing interactive
data analysis while building up code you can use again in
future.

Figure 1: An R session running inside Emacs using ESS. The R code file is on the left, and R itself is running on the right.
You write in the left-hand pane and use a keyboard shortcut to send bits of code over to the right-hand pane, where they
are executed by R.

the Natbib package) which you may come across in other introductory discussions.
7A note about fonts and LATEX. It used to be that getting LATEX to use anything but a relatively small set of fonts was a very tedious business.

This is no longer the case. The XeTeX engine makes it trivially easy to use any Postscript, TrueType or OpenType font installed on your system.
XeTeX was originally developed for use on the Mac, but is available now for Linux and Windows as well. If you want to use a variety of fonts with
an absolute minimum of fuss, use the xelatex command to typset your documents instead of pdflatex.

http://www.gnu.org/software/auctex/
http://www.r-project.org/
http://www.r-project.org/
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=xetex

The Political Methodologist, vol. 18, no. 2 13

You’ll present your results in papers, but also in talks
where you will likely use some kind of presentation software.
Microsoft’s PowerPoint is the most common application, but
there are better ones. If you wish, you can use LATEX, too,
creating slides with the Beamer document class and display-
ing them as full-screen PDFs. Alternatively, on Mac OS X
Apple’s Keynote is very good. One benefit of using a Mac
is that PDF is the operating system’s native display format,
so PDF graphics created in R can simply be dropped into
Keynote without any compatibility problems. Microsoft’s
PowerPoint is less friendly toward the clean integration of
PDF files in presentations.8

Minimize Error

We have already seen how the right set of tools can save
you time by automatically highlighting the syntax of your
code, ensuring everything you cite ends up in your bibliog-
raphy, picking out mistakes in your markup, and providing
templates for commonly-used methods or functions. Your
time is saved twice over: you don’t repeat yourself, and
you make fewer errors you’d otherwise have to fix. When
it comes to managing ongoing projects, minimizing error
means addressing two related problems. The first is to find
ways to further reduce the opportunity for errors to creep in
without you noticing. This is especially important when it
comes to coding and analyzing data. The second is to find
a way to figure out, retrospectively, what it was you did to
generate a particular result. These problems are obviously
related, in that it’s easy to make a retrospective assessment
of well-documented and error-free work. As a practical mat-
ter, we want a convenient way to document work as we go,
so that we can retrace our steps in order to reproduce our
results. We’ll also want to be able to smoothly recover from
disaster when it befalls us.

Errors in data analysis often well up out of the gap
that typically exists between the procedure used to produce
a figure or table in a paper and the subsequent use of that
output later. In the ordinary way of doing things, you have
the code for your data analysis in one file, the output it pro-
duced in another, and the text of your paper in a third file.
You do the analysis, collect the output and copy the relevant
results into your paper, often manually reformatting them
on the way. Each of these transitions introduces the oppor-
tunity for error. In particular, it is easy for a table of results
to get detached from the sequence of steps that produced it.
Almost everyone who has written a quantitative paper has
been confronted with the problem of reading an old draft
containing results or figures that need to be revisited or re-
produced (as a result of peer-review, say) but which lack

any information about the circumstances of their creation.
Academic papers take a long time to get through the cy-
cle of writing, review, revision, and publication, even when
you’re working hard the whole time. It is not uncommon to
have to return to something you did two years previously
in order to answer some question or other from a reviewer.
You do not want to have to do everything over from scratch
in order to get the right answer. I am not exaggerating when
I say that, whatever the challenges of replicating the results
of someone else’s quantitative analysis, after a fairly short
period of time authors themselves find it hard to replicate
their own work. Computer Science people have a term of art
for the inevitable process of decay that overtakes a project
simply in virtue of its being left alone on the hard drive for
six months or more: bit–rot.

Literate Programming with Sweave

A first step toward closing this gap is to use Sweave when
doing quantitative analysis in R. Sweave is a literate pro-
gramming framework designed to integrate the documen-
tation of a data analysis and its execution. You write the
text of your paper (or, more often, your report document-
ing a data analysis) as normal. Whenever you want to run
a model, produce a table or display a figure, rather than
paste in the results of your work from elsewhere, you write
down the R code that will produce the output you want.
These “chunks” of code are distinguished from the regular
text by a special delimiter at their beginning and end. A
small sample is shown in Listing 2. The code chunk begins
with the line <<load-data, echo=true>>=. The character
sequence <<>>= is the marker for the beginning of a chunk:
load-data is just a label for the chunk and echo=true is an
option. The end of each chunk is marked by the @ symbol.

When you’re ready, you “weave” the file: you feed
it to R, which processes the code chunks, and spits out a
finished version where the code chunks have been replaced
by their output. This is now a well-formed LATEX file that
you can then turn into a PDF document in the normal way.
Conversely, if you just want to extract the code you’ve writ-
ten from the surrounding text, then you “tangle” the file,
which results in an .R file. It’s pretty straightforward in
practice. Sweave files can be edited in Emacs, as ESS un-
derstands them.

The strength of this approach is that is makes it much
easier to document your work properly. There is just one
file for both the data analysis and the writeup. The output
of the analysis is created on the fly, and the code to do it
is embedded in the paper. If you need to do multiple but
identical (or very similar) analyses of different bits of data,

8The actual business of giving talks based on your work is beyond the scope of this discussion. Suffice to say that there is plenty of good advice
available via Google, and you should pay attention to it.

9For some real-world case-studies of reproductions of peer-reviewed studies using Sweave, and the errors uncovered as a result, see Hothorn and

http://latex-beamer.sourceforge.net/
http://www.apple.com/iwork/keynote/

14 The Political Methodologist, vol. 18, no.2

Sweave can make generating consistent and reliable reports
much easier.9

\subsection*{Some exploratory analysis}

In this section we do some exploratory analysis of

the data. We begin by reading in the data file:

<<load-data, echo=true>>=

load the data.

my.data <- read.csv("data/sampledata.csv",header=TRUE)

@ % The closing delimiter ends the code chunk.

We should \emph{plot the data} to take a look at

it:

<<plot-data, echo=true>>=

make some plots.

with(my.data, plot(x,y))

@

Maybe run some models, too.

<<ols-model echo=true>>=

OLS model

out <- lm(y ∼x1 + x2,data=my.data)

summary(out)

@

This concludes the exploratory analysis.

Listing 2: LATEX and R code mixed together in an Sweave
file.

A weakness of the Sweave model is that when you
make changes, you have to reprocess all of the code to repro-
duce the final LATEX file. If your analysis is computationally
intensive this can take a long time. You can go a little ways
toward working around this by designing projects so that
they are relatively modular, which is good practice anyway.
But for projects that are unavoidably large or computation-
ally intensive, the add-on package cacheSweave, available

from the R website, does a good job alleviating the prob-
lem.

Literate Programming with Org-mode

Org-mode is an Emacs mode originally designed to make it
easier to take notes, make outlines and manage to-do lists.
Very much in the spirit of Emacs itself, its users have ex-
tended it so that it is capable of all kinds of other things,
too, such as calendar management, time-tracking, and so
on. One very powerful extension to org-mode is Org-Babel,
which is a generalized literate-programming framework for
org-mode documents. It works like Sweave, except that in-
stead of writing your papers, reports, or documentation in
LATEX and your code in R, you write text in Org-mode’s
lightweight markup syntax and your code in any one of a
large number of supported languages. Org-mode has very
powerful export capabilities, so it can convert .org files to
LATEX, HTML, and many other formats quite easily. Exam-
ples of it in use can be seen at the Org-babel website. This
article was written as a plain-text .org file and the raw ver-
sion is available for inspection as a repository on GitHub.
You can treat Org-Babel just as you would Sweave, or you
can take advantage of the fact that it’s fully part of org-
mode and get all of the latter’s functionality for free.

For example, Figure 2 is generated on the fly from
source-code blocks included in the .org source for this arti-
cle. A piece of code can be executed, displayed, or both —
as in the case of Listing 3. Then the figure can be created
directly. I don’t show the code for this here, but you can
look in the source file for this article to see how it’s done.
library(ggplot2)

tea <- rnorm(100)

biscuits <- tea + rnorm(100,0,1.3)

Listing 3: “Live” code contained in this document.

Tea

B
is

cu
its

−2

0

2

4

−2 −1 0 1

Figure 2: A figure produced from code embedded in the source (.org) file for this article.

Leisch (2011).

http://orgmode.org/
http://orgmode.org/worg/org-contrib/babel/
http://orgmode.org/worg/org-contrib/babel/intro.html
https://github.com/kjhealy/workflow-paper
https://github.com/kjhealy/workflow-paper

The Political Methodologist, vol. 18, no. 2 15

Use Revision Control

The task of documenting your work at the level of particu-
lar pieces of code or edits to paragraphs in individual files
can become more involved over time, as projects grow and
change. This can pose a challenge to the Literate Program-
ming model. Moreover, what if you are not doing statistical
analysis at all, but still want to keep track of your work as it
develops? The best thing to do is to institute some kind of
version control system to keep a complete record of changes
to a file, a folder, or a project. This can be used in conjunc-
tion with or independently of a documentation method like
Sweave. A good version control system allows you to eas-
ily “rewind the tape” to earlier incarnations of your notes,
drafts, papers and code, and lets you keep track of what’s
current without having to keep directories full of files with
confusingly similar names like Paper-1.txt, Paper-2.txt,
Paper-conferenceversion.txt, and so on.

In the social sciences and humanities, you are most
likely to have come across the idea of version control by way
of the “Track Changes” feature in Microsoft Word, which
lets you see the edits you and your collaborators have made
to a document. Think of true version control as a way to
keep track of whole projects (not just individual documents)
in a much better-organized, comprehensive, and transpar-
ent fashion. Modern version control systems such as Sub-
version, Mercurial and Git can, if needed, manage very large
projects with many branches spread across multiple users.
As such, you have to get used to some new concepts re-
lated to tracking your files, and then learn how your version
control system implements these concepts. Because of their
power, these tools might seem like overkill for individual
users. (Again, though, many people find Word’s “Track
Changes” feature indispensable once they begin using it.)
But version control systems can be used quite straightfor-
wardly in a basic fashion, and they increasingly come with
front ends that can be easily integrated with your text edi-
tor.10 Moreover, you can meet these systems half way. The
excellent DropBox, for example, allows you to share files
between different computers you own, or with collaborators
or general public. But it also automatically version-controls
the contents of these folders.

Revision control has significant benefits. A tool like
Git or Mercurial combines the virtues of version control
with backups, because every repository is a complete, self-
contained, cryptographically signed copy of the project.
It puts you in the habit of recording (or “committing”)
changes to a file or project as you work on it, and (briefly)
documenting those changes as you go. It allows you to eas-

ily test out alternative lines of development by branching a
project. It allows collaborators to work on a project at the
same time without sending endless versions of the “master”
copy back and forth via email, and it provides powerful tools
that allow you to automatically merge or (when necessary)
manually compare changes that you or others have made.
Perhaps most importantly, it lets you revisit any stage of a
project’s development at will and reconstruct what it was
you were doing. This can be tremendously useful whether
you are writing code for a quantitative analysis, managing
field notes, or writing a paper.11 While you will probably
not need to control everything in this way (though some peo-
ple do), I strongly suggest you consider managing at least
the core set of text files that make up your project (e.g., the
code that does the analysis and generates your tables and
figures; the dataset itself; your notes and working papers,
the chapters of your dissertation, etc). As time goes by you
will generate a complete, annotated record of your actions
that is also a backup of your project at every stage of its
development. Services such as GitHub allow you to store
public or (for a fee) private project repositories and so can
be a way to back up work offsite as well as a platform for
collaboration and documentation of your work.

You don’t need backups until you really, re-
ally need them

Regardless of whether you choose to use a formal revision
control system, you should nevertheless have some kind of
systematic method for keeping track of versions of your files.
The task of backing up and synchronizing your files is re-
lated to the question of version control. Apple’s Time Ma-
chine software, for example, backs up and versions your
files, allowing you to step back to particular instances of
the file you want. Other GUI-based file synchronization
tools, such as DropBox and SugarSync, are available across
various platforms.

Even if you have no need for a synchronization ap-
plication, you will still need to back up your work regularly.
Because you are lazy and prone to magical thinking, you will
not do this responsibly by yourself. This is why the most
useful backup systems are the ones that require a minimum
amount of work to set up and, once organized, back up ev-
erything automatically to an external (or remote) hard disk
without you having to remember to do anything. On Macs,
Apple’s Time Machine software is built in to the operat-
ing system and makes backups very easy. On Linux, you
can use rsync for backups. It is also worth looking into
a secure, peer-to-peer, or offsite backup service like Crash-

10Emacs comes with support for a variety of VCS systems built in. There’s also a very good add-on package, Magit, devoted specifically to Git.
11Mercurial and Git are distributed revision control systems (DVCSs) which can handle projects with many contributors and very complex,

decentralized structures. Bryan O’Sullivan’s Distributed Version Control with Mercurial is a free, comprehensive guide to one of the main DVCS
tools, but also provides a clear account of how modern version-control systems have developed, together with the main concepts behind them. For
Git, I recommend starting at this site and following the links to the documentation.

http://subversion.tigris.org/
http://subversion.tigris.org/
http://www.selenic.com/mercurial/
http://git.or.cz/
https://www.getdropbox.com/
http://www.github.com
http://www.getdropbox.com
http://www.sugarsync.com/
http://www.psychocats.net/ubuntu/backup
http://www.crashplan.com/
http://www.crashplan.com/
http://philjackson.github.com/magit/
http://www.crashplan.com/
http://hgbook.red-bean.com/hgbook.pdf
http://git-scm.com/

16 The Political Methodologist, vol. 18, no.2

plan, Spider Oak, or Backblaze. Offsite backup means that
in the event (unlikely, but not unheard of) that your com-
puter and your local backups are stolen or destroyed, you
will still have copies of your files.12 As Jamie Zawinski has
remarked, when it comes to losing your data “The universe
tends toward maximum irony. Don’t push it.”

Pulling it Together: An Emacs Starter Kit
for the Social Sciences

A step-by-step guide to downloading and installing every
piece of software I’ve mentioned so far is beyond the scope
of this discussion. But let’s say you take the plunge and
download Emacs, a TEX distribution, R, and maybe even
Git. Now what? If you’re going to work in Emacs, there are
a variety of tweaks and add-ons that are very helpful but not
set by default. To make things a little easier, I maintain an
Emacs Starter Kit for the Social Sciences. It’s designed to
smooth out Emacs’ rough edges by giving you a drop-in col-
lection of default settings, as well as automatically installing
some important add-on packages. It will, I hope, help you
skirt the abyss of Setting Things Up Forever. The original
version of the kit was written by Phil Hagelberg and was
made to go with the “Meet Emacs” screencast mentioned
above. It was aimed at software developers in general. Eric
Schulte, one of the authors of Org-babel, modified and fur-
ther extended the kit. My version adds support for AucTeX,
ESS, and other bits and pieces mentioned here. As you can
see if you follow the links, the kit is stored on GitHub and
you are free to fork it and modify it to your own liking.

Do I Have to Use this Stuff?

Pros and Cons

Using Emacs, LATEX and R together has four main advan-
tages. First, these applications are all free. You can try
them out without much in the way of monetary expense.
(Your time may be a different matter, but although you
don’t believe me, you have more of that now than you will
later.) Second, they are all open-source projects and are all
available for Mac OS X, Linux and Windows. Portability
is important, as is the long-term viability of the platform
you choose to work with. If you change your computing
system, your work can move with you easily. Third, they

deliberately implement “best practices” in their default con-
figurations. Writing documents in LATEX encourages you to
produce papers with a clear structure, and the output itself
is of very high quality aesthetically. Similarly, by default
R implements modern statistical methods in a way that
discourages you from thinking about statistics in terms of
canned solutions to standard problems. It also produces
figures that accord with accepted standards of efficient and
effective information design. And fourth, the applications
are closely integrated. Everything (including version con-
trol systems) can work inside Emacs, and all of them talk
to or can take advantage of the others. R can output LATEX
tables, for instance, even if you don’t use Sweave.

None of these applications is perfect. They are pow-
erful, but they can be hard to learn. However, you don’t
have to start out using all of them at once, or learn every-
thing about them right away — the only thing you really
need to start doing immediately is keeping good backups.
There are a number of ways to try them out in whole or
in part. You could try LATEX first, using any editor. Or
you could try Emacs and LATEX together. You could begin
using R and its GUI.13 Sweave or Org-babel can be left till
last, though I have found these increasingly useful since I’ve
started using them, and wish that all of my old project di-
rectories had some documentation in one or other of these
formats. Revision control is more beneficial when imple-
mented at the beginning of projects, and best of all when
committing changes to a project becomes a habit of work.
But it can be added at any time.

You are not condemned to use these applications for-
ever, either. LATEX and (especially) Org-mode documents
can be converted into many other formats. Your text files
are editable in any other text editor. Statistical code is by
nature much less portable, but the openness of R means
that it is not likely to become obsolete or inaccessible any
time soon.

A disadvantage of these particular applications is
that I’m in a minority with respect to other people in my
field. This is less and less true in the case of R, but re-
mains so for LATEX. (It also varies across social science dis-
ciplines.) Most people use Microsoft Word to write papers,
and if you’re collaborating with people (people you can’t
boss around, I mean) this can be an issue. Similarly, jour-
nals and presses in my field often do not accept material
marked up in LATEX, though again there are important ex-

12I know of someone whose office building was hit by a tornado. She returned to find her files and computer sitting in a foot of water. You never
know.

13If you already know Emacs, you should certainly try R using ESS instead of the R GUI, though.
14Getting from LATEX to Word is easiest via HTML. But if you really want to maximize the portability of your papers or especially your reading

notes or memos, consider writing them in a modern lightweight markup format. Org-mode’s native format is effectively one of these already, and
it provides built-in support for export to many others. An org-mode file can also be exported easily to rich-text or HTML, and from there Word
or Google Docs will open it. Other options for lightweight markup include Markdown or its close relation, MultiMarkdown. Documents written
in these formats are easy to read in their plain-text form but can be simply and directly converted into HTML, Rich Text, LATEX, Word, or other
formats. TextMate has good support for Markdown and MultiMarkdown, allowing you to do these conversions more or less automatically. John
MacFarlane’s Pandoc is a powerful tool that can read markdown and (subsets of) reStructuredText, HTML, Org, and LATEX; and it can write

http://www.crashplan.com/
https://spideroak.com/
http://www.backblaze.com/
http://jwz.livejournal.com/801607.html
http://jwz.livejournal.com/801607.html
http://kjhealy.github.com/emacs-starter-kit/
http://github.com/technomancy/emacs-starter-kit/tree/master
http://github.com/technomancy/emacs-starter-kit/tree/master
http://peepcode.com/products/meet-emacs
https://github.com/eschulte/emacs-starter-kit
https://github.com/eschulte/emacs-starter-kit
https://github.com/kjhealy/emacs-starter-kit
http://en.wikipedia.org/wiki/Markdown
http://fletcherpenney.net/MultiMarkdown
http://johnmacfarlane.net/pandoc/

The Political Methodologist, vol. 18, no. 2 17

ceptions. Converting files to a format Word understands can
be tedious (although it is quite doable).14 I find these dif-
ficulties are outweighed by the day-to-day benefits of using
these applications, on the one hand, and their longer-term
advantages of portability and simplicity, on the other. Your
mileage, as they say, may vary.

Some Alternatives

There are many other applications you might put at the
center of your workflow, depending on need, personal pref-
erence, willingness to pay some money, or desire to work
on a specific platform. For text editing, especially, there is
a plethora of choices. On the Mac, quality editors include
BBEdit (beloved of many web developers), Smultron, and
TextMate (shown in Figure 3). TextMate has strong sup-
port for LATEX and good (meaning, ESS-like) support for
R. Because it is a modern application written specifically
for the Mac it can take advantage of features of OS X that
Emacs cannot, and is much better integrated with the rest
of the operating system. It also has good support for many

of the ancillary applications discussed above, such as ver-
sion control systems.15 On Linux, an alternative to Emacs
is vi or Vim, but there are many others. For Windows there
is Textpad, WinEdt, UltraEdit, and NotePad++ amongst
many others. Most of these applications have strong sup-
port for LATEX and some also have good support for statistics
programming.

For statistical analysis in the social sciences, the main
alternative to R is Stata. Stata is not free, but like R it
is versatile, powerful, extensible and available for all the
main computing platforms. It has a large body of user-
contributed software. In recent versions its graphics capa-
bilities have improved a great deal. ESS can run Stata inside
Emacs in the same way as it can do for R. Other editors can
also be made to work with Stata: Jeremy Freese provides
an UltraEdit syntax highlighting file for Stata. There is a
Stata mode for WinEdt. Friedrich Huebler has a guide for
integrating Stata with programming editors. Gabriel Ross-
man’s blog Code and Culture has many examples of using
Stata in the day-to-day business of analyzing sociological
data.

Figure 3: An earlier version of this document being edited in TextMate.

to MarkDown, reStructuredText, HTML, LATEX, ConTeXt, RTF, DocBook XML, groff man, and S5 HTML slide shows. Pandoc is terrifically
useful and I recommend checking it out. Lightweight markup languages like Markdown and Textile have a harder time dealing with some of the
requirements of scholarly writing, especially the machinery of bibliographies and citations. If they could handle this task elegantly they would be
almost perfect, but in practice this would probably just turn them back into something much less lightweight. Even here, though, good progress
is being made as Pandoc will soon include support for citations.

15Its next major version, TextMate 2, has been in development for a very long time and is awaited with a mixture of near-religious hope, chronic
anxiety and deep frustration by users of the original.

http://www.barebones.com/products/bbedit/index.shtml
http://smultron.sourceforge.net/
http://macromates.com/
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.vim.org/
http://www.textpad.com/
http://www.winedt.com/
http://www.ultraedit.com/
http://notepad-plus.sourceforge.net/uk/site.htm
http://www.stata.com/
http://www.jeremyfreese.com/#other/20research
http://www.winedt.org/Config/modes/Stata.php
http://mysite.verizon.net/huebler/2005/20050310_Stata_editor.html
http://mysite.verizon.net/huebler/2005/20050310_Stata_editor.html
http://codeandculture.wordpress.com/tag/stata/

18 The Political Methodologist, vol. 18, no.2

Amongst social scientists, revision control is perhaps
the least widely-used of the tools I have discussed. But I am
convinced that it is the most important one over the long
term. While tools like Git and Mercurial take a little getting
used to both conceptually and in practice, the services they
provide are extremely useful. It is already quite easy to use
version control in conjunction with some of the text editors
discussed above: Emacs and TextMate both have support
for various DVCSs. On the Mac, CornerStone and Versions
are full-featured applications designed to make it easy to use
Subversion. Taking a longer view, version control is likely
to become more widely available through intermediary ser-
vices or even as part of the basic functionality of operating
systems.

A Broader Perspective

It would be nice if all you needed to do your work was a
box software of software tricks and shortcuts. But of course
it’s a bit more complicated than that. In order to get to
the point where you can write a paper, you need to be or-
ganized enough to have read the right literature, maybe
collected some data, and most importantly asked an inter-
esting question in the first place. No amount of software is
going to solve those problems for you. Too much concern
with the details of your setup hinders your work. Indeed
— and I speak from experience here — this concern is itself
a kind self-imposed distraction that placates work-related
anxiety in the short term while storing up more of it for
later.16 On the hardware side, there’s the absurd produc-
tivity counterpart to the hedonic treadmill, where for some
reason it’s hard to get through the to-do list even though
the caf you’re at contains more computing power than was
available to the Pentagon in 1965. On the software side,
the besetting vice of productivity-enhancing software is the
tendency to waste a lot of your time installing, updating,
and generally obsessing about your productivity-enhancing
software.17 Even more generally, efficient workflow habits
are themselves just a means to the end of completing the
projects you are really interested in, of making the things
you want to make, of finding the answers to the questions
that brought you to graduate school. The process of idea

generation and project management can be run well, too,
and perhaps even the business of choosing what the projects
should be in the first place. But this is not the place — and
I am not the person — to be giving advice about that.

All of which is just to reiterate that it’s the prin-
ciples of workflow management that are important. The
software is just a means to an end. One of the smartest,
most productive people I’ve ever known spent half of his ca-
reer writing on a typewriter and the other half on an IBM
Displaywriter. His backup solution for having hopelessly
outdated hardware was to keep a spare Displaywriter in a
nearby closet, in case the first one broke. It never did.

References

Dalgaard, Peter. 2002. Introductory Statistics with R. New
York, NY: Springer.

Fox, John. 2002. An R and S-Plus Companion to Applied
Regression. Thousand Oaks, CA: Sage.

Harrell, Frank E. 2001. Regression Modeling Strategies.
New York, NY: Springer.

Gelman, Andrew and Jennifer Hill. 2007. Data Analysis
Using Regression and Multilevel/Hierarchical Mod-
els. New York, NY: Cambridge University Press.

Hothon, Torsten and Friedrich Leisch. 2011. “Case Studies
in Reproducibility.” Briefings in Bioinformatics XX
(January):1–13.

Kopka, Helmut and Patrick W. Daly. 2003. Guide to LATEX.
New York, NY: Addison Wesley.

Maindonald, John and John Braun. 2003. Data Analysis
and Graphics Using R: An Example-Based approach.
New York, NY: Cambridge University Press.

Mittelbach, Frank and Michel Goossens with Johannes
Braams, David Carlisle, and Chris Rowley. 2004.
The LATEX Companion. New York, NY: Addison
Wesley.

Venables, W.N. and B.D. Ripley. 2002. Modern Applied
Statistics with S. New York, NY: Springer.

16See Merlin Mann, amongst others, for more on this point.
17Mike Hall’s brilliant “Org-Mode in your Pocket is a GNU-Shaped Devil” makes this point very well.

http://www.zennaware.com/cornerstone/
http://www.versionsapp.com/
http://en.wikipedia.org/wiki/David_Kellogg_Lewis
http://en.wikipedia.org/wiki/David_Kellogg_Lewis
http://www-03.ibm.com/ibm/history/exhibits/pc/pc_8.html
http://www-03.ibm.com/ibm/history/exhibits/pc/pc_8.html
http://inboxzero.com/
http://mph.puddingbowl.org/2010/02/org-mode-in-your-pocket-is-a-gnu-shaped-devil/

The Political Methodologist, vol. 18, no. 2 19

Collaboration for Social Scientists, or
Software is the Easy Part

Mark M. Fredrickson, Paul F. Testa & Nils B. Weidmann
University of Illinois & Yale University
mark.m.fredrickson@gmail.com

Collaboration Basics

In this article, we consider how to improve two different
modes of collaboration: synchronous and asynchronous.
When working synchronously, contributors focus on the
same portions of the research at the same time. Of course,
virtually any research project will require collaborators
to spend time working on either different portions of the
project or working on the same sections but at different
times. We label this form of collaboration asynchronous.
Asynchronous collaboration requires more careful attention
to dividing labor, and we spend more time providing soft-
ware solutions in this domain. These suggestions are based
on what has worked for us. These suggestions are grounded
in experience, and we think they are useful techniques for
any team to adopt. We have also found that software is the
easy part of any collaboration while the personal and in-
tellectual parts of collaboration are both more difficult and
more fulfilling than playing with software tools. Hopefully,
adopting some of these techniques may help your team get
past technical details faster and down to the real business
of producing research.

Synchronous Collaboration

While it might appear that only collaborators at the same
institution or who can frequently meet face to face will
benefit from synchronous collaboration techniques, many of
these techniques rely on networked computers or can be ap-
plied over video chat or speaker phone.

We begin by importing some techniques from soft-
ware engineering. In recent years, so-called Agile program-
ming and project management approaches to software en-
gineering have become popular, especially at start ups and
younger development shops. Many techniques fall under the
umbrella of “Agile” methods, including suggestions for or-
ganizing teams, minimizing unnecessary meetings, and han-
dling client requests. While social scientists could benefit
from these suggestions, we tend to be our own clients and
work in smaller teams than programmers. One technique we
do think would be of benefit to social scientists would be the
concept of pair programming. Pair programming places two
programmers at the same computer: one screen, one key-
board, two heads. One programmer takes the lead to write
software, while the second provides suggestions, acts as a

sounding board, catches errors, and questions assumptions
made by the first programmer.

While it may sound wasteful to place two collabora-
tors in front of a single computer and have them both focus
on the same task, the technique can lead to more code being
written and higher quality software as well. The key insight
is that typing is rarely the bottleneck for producing code.
Having a second person on hand to help with the concepts,
design, and implementation cuts down on time spent chas-
ing dead-ends or time wasted on simple bugs. If you have
spent several hours on a problem only to realize your mis-
take while explaining the problem to someone, you will see
the immediate benefits of pair programming.

In practice, pair programming need not have both
subjects staring at the same screen at the same time. One
programmer may be writing code, while the other looks into
API documentation, writes unit tests, or provides documen-
tation, but is immediately available to support the first pro-
grammer. Social scientists might additionally adapt this de-
sign to having one collaborator writing code, while the other
simultaneously writes text in support of the analysis.

Collaborators need not be in the same physical space.
There are several tools for real-time co-editing of documents.
Wikipedia provides a fairly detailed list of collaborative real-
time editors. All of these editors allow multiple authors to
simultaneously edit documents, which may even be a use-
ful feature to pair programmers in the same physical space.
Since this issue of TPM is strongly encouraging learning and
using a text editor, you may wish to favor editors that allow
for simultaneous editing. At a minimum, GNU Screen pro-
vides an immediate solution for Emacs and VIM users who
wish to pair program. More advanced uses may require a
editor plugin or separate editor.

In addition to managing file editing, some real time
editors also facilitate verbal communication. Of course, if
your editor does not immediately provide this service, a call
via Skype or Google Chat can fulfill communication needs.
Of course, these tools can also be of use to collaborators,
even they forgo the pair programming model.

Asynchronous Collaboration

Even the closest of collaborators need to spend some time
apart. The primary challenge for effective asynchronous col-
laboration is ensuring that this time is spent contributing
to the final product and not wondering where one’s changes
went and why one’s partner is working off an obsolete draft.
We suggest three tools for improving asynchronous collab-
oration: sharing files to provide common, immediate access
to the latest documents; version control systems to safely
manage simultaneous updates from collaborators; and build
scripts to encapsulate the techniques necessary to create ar-
tifacts, such as PDF documents.

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Collaborative_real-time_editor
http://en.wikipedia.org/wiki/Collaborative_real-time_editor
http://tooky.github.com/2010/01/08/remote-pairing-with-gnu-screen-and-vim.html
http://tooky.github.com/2010/01/08/remote-pairing-with-gnu-screen-and-vim.html
http://www.skype.com
http://www.google.com/talk/

20 The Political Methodologist, vol. 18, no.2

Shared Files

Early in collaboration projects, we find it is common to ex-
change ideas and drafts via email. While simple to use, man-
aging files and staying up-to-date with collaborators quickly
becomes a burden to the project. Is the current version the
document in the email from yesterday? Or the version you
have on your hard drive? If you’ve asked these questions,
you understand the problem of sharing files via email.

Services such as Dropbox provide a relatively simple
and elegant solution to the challenge of keeping collabo-
rators on same page. Users download a desktop applica-
tion that creates a DropBox folder on their computer. Files
stored in this folder are available online through the user’s
account, as well as on any other computer the user has in-
stalled DropBox on or shared his or her folder with. Changes
made to a file are automatically synchronized with a user’s
online account and other computers, ensuring that collabo-
rators are always working off the most recent copy.

Think of DropBox as the sort of iPhone of file sharing
services (in fact there are several DropBox-supporting ap-
plications for the iPhone and other mobile devices). It’s rel-
atively easy to use, synchronizes changes automatically and
offers a degree of version control (up to thirty days for free
users and unlimited for paying customers). DropBox is well
suited for the less technically savvy social scientists. More
advanced users and frequent collaborators may chafe at the
limitations of its “freemium” services and find that some of
its more user friendly features promote bad collaboration
habits, specifically simultaneous editing of documents.

Version Control

While shared files solve the problem of all collaborators
having access to common resources, simple file servers pro-
vide no guarantee that collaborators will not unintention-
ally overwrite each other’s changes. Consider for example
the following scenario, both you and your collaborator are
working on the same LaTeX file. You are editing the ab-
stract, while your partner changes a few lines in the conclu-
sion. You save your work to the shared area, while unknown
to you, your partner saved her work only a few minutes be-
fore. Even though you were working in an entirely different
part of the file, your changes overwrite those of your part-
ner, silently dropping her work and reverting back to the
old conclusion. Your partner’s work has been lost.

This is exactly what so-called version control (VC)
systems are designed to avoid. Developed for software engi-

neering, these systems enable multiple authors to work on
the same documents and safely merge their changes. Ver-
sion control systems come in two flavors: centralized and
distributed. The basic setup of a centralized version control
system is simple. Collaborators work off a central reposi-
tory, where the version-controlled documents reside. Upon
joining a project, each collaborator obtains a working copy
of each of these documents. Versions are tracked by means
of revision numbers, assigned and maintained by the VC
system. When you obtain a document (“check out”), your
local copy is assigned the revision number of the repository
at that time.

As the project proceeds, collaborators change differ-
ent parts of their working copies of the same document,
which brings us to the situation described above: how do
your modified abstract and the conclusion written by your
collaborator end up in the same document? Let’s assume
that you are finished writing the abstract, while your part-
ner is still working on the conclusion. Your and your col-
laborator’s working copies are both currently in revision 22.
You upload your changes to the central repository, a step
that in the VC world is called a “commit”. When you do so,
a new revision (rev. 23) is created in the central repository.
Once your partner attempts to upload the new document
with the conclusion, the VC system prevents her from doing
so, because the working copy she is using is not up to date
and still in revision 22. Prior to committing her changes,
she has to update her working copy to the current revision
of the repository (rev. 23). This is done by performing an
“update” operation in the VC system, during with the up-
dated parts in the main document (the abstract) are merged
into the local working copy of your partner, while, and this
is important, preserving her newly written conclusion.1

Various implementations of this centralized version
control model exist. One of the most popular systems is
Subversion (SVN), which is available free of charge (both
the server required to set up a central repository, and a com-
mand line client to check out and maintain a local working
copy). However, various alternatives exist that make life
easier for less tech-savvy people. Projectlocker offers Sub-
version hosting, and a free account can store up to 300 MB.
If the documents you put under version control mainly in-
clude plain-text files, such as those containing Latex and
R code, this amount of space is more than enough. Tor-
toiseSVN is a graphical Subversion client for Windows users
that integrates nicely with the Windows Explorer. A similar
project exists for OS X (SCPlugin), but due to its early de-
velopment stage, some people may prefer commercial prod-

1Things become more tricky if you and your partner modify the same parts of a document (for example, you both provide an abstract). In this
case, human intervention is required: the VC system highlights the conflicting changes, but lets you decide what should be the final version. Most
importantly, the VC system will not delete work with out your explicit consent. VC systems (generally) assess changes on a line-by-line basis.
You can minimize your conflicts by editing the fewest lines possible for any change and by making frequent check-ins. You may find it helpful to
use hard wrapping in your editor of choice when editing .tex files, at say 80 characters. This will automatically break long sentences into smaller
chunks from the perspective of the VC system and provide for fewer headaches down the road.

http://www.dropbox.com
http://subversion.tigris.org/
http://www.projectlocker.com/
http://tortoisesvn.tigris.org/
http://tortoisesvn.tigris.org/
http://scplugin.tigris.org/

The Political Methodologist, vol. 18, no. 2 21

ucts (Cornerstone or Versions).

As the name implies, distributed version control sys-
tems spread out the work of managing repositories while
still emphasizing collaboration. The main difference is that
instead of a single, server-side repository, each collaborator
has a local repository and a local working copy. The advan-
tage of this mode of version control is that each collaborator
can work offline, make small, frequent, and fast commits,
and still communicate with other repositories (usually by
pushing to a server as with a centralized system). By their
decentralized nature, distributed VCs make “branching” a
natural technique. “Branching” refers to making parallel
copies of the repository to try out ideas, make complex
changes, or just play around in a sandbox. For example,
say you wish to add an additional data source to a paper to
see if it adds strength to the argument, but you and/or your
collaborators also will be editing the document simultane-
ously. By adding a branch, you have a safe place to add data
and change wide sections of the analysis, but can still edit
text on the main document. If the additional data source
proves useful, you can merge the branch back to the main
code base, maintaining any edits. If the additional data
is not useful, you have not harmed your primary document.
In a distributed version control system, every collaborator is
working his or her own branch, so these merges are natural
and well supported.2

The downside of distributed systems is that they re-
quire slightly more overhead than a centralized system. To
commit changes in a centralized system, a user pushes his
changes to a centralized server and they are immediately
available to other users. In a decentralized system, a user
commits locally, then pushes to a remote server. This re-
mote server can either be commonly shared or unique to the
individual collaborator. In the latter case, the other collab-
orators will need to pull in changes from their associates’
online repositories. To some degree this additional com-
plexity can be hidden by tools. There are number of online
services providing tooling around distributed version con-
trols systems (GitHub for Git, Launchpad for Bazaar, and
BitBucket for Mercurial — three popular DVCs). Friendly
graphical client side tools for working with these version
control systems also exist.

So which to use? In our experience, centralized ver-
sion control (specifically SVN) is the easiest for collaborators
to use, but has required the most work to set up the server.
If you have technical support through your institution or
plan to use an online service, the maturity and simplicity

of SVN could be a big benefit to your team. On the other
hand, distributed version control systems can be quick to get
up and running. For example, for a paper involving people
with a mix of technical ability, we used a hybrid approach:
Dropbox held the files and a shared distributed VC repos-
itory for the group. The less technical contributors edited
the files directly on Dropbox. Others pushed and pulled to
their own local repositories.

Single users can also make quick use of distributed
systems to have an undo stack of previous documents and
a place to create sandbox branches. In both the local user
and the Dropbox case, it would be easy to move from such
simple used of VC systems to the use of a shared remote
server for more serious collaboration.3

Scripts

While version control systems will keep track of changes
and make sure the source is in a consistent state, source
code alone (and here we include things such as .tex files and
data), does not completely describe how to create the re-
search. Consider, for example, creating a figure for a paper.
Being a good collaborator, you take the time to write the
figure generating code in figure.R and insert it into the
main LATEXfile using \includegraphics. The figure relies
on data in data.csv and some code in models.R. While
it is straightforward for the original author to create this
graphic, will it be obvious to others in the project that if
either the data or models change, the figure should also
change? For lengthy or large projects, even the original
author may forget which files depend on others.

Again borrowing for software engineering, we suggest
the use of build files to solve this problem. Build files ex-
plicitly state dependencies between files and explain how to
generate artifacts, such as PDF files. As an added bene-
fit, build files automate the creation of artifacts and ensure
that files are built in the proper order. Most importantly,
build files ensure that artifacts are updated when source
documents, including data, change. Returning to the figure
example above, we could notate the necessary conditions for
updating the figure and the main PDF with the following
GNU Makefile4:

paper.pdf: figure.pdf paper.tex

latexmk -pdf paper.tex

figure.pdf: figure.R data.csv

R --silent --file = figure.R

2It is fair to note that systems like Subversion support branching; however, SVN places more burden on the user to merge branches than the
distributed systems. This situation is improving for SVN and will likely be a non-issue in the future.

3To collaboratively produce this article we used the DVCS Git and the free-for-public-repositories GitHub service. We designated Fredrickson’s
repository as the “canonical” repository, but Testa and Weidmann had their own repositories. When Testa or Weidmann wished to incorporate a
change into the canonical repository, Fredrickson pulled in the changes. You can see the repository and the entire history of the project online .

4We use the classic and widely available GNU make system, but other build systems exist. Some of these systems, for example Rake for Ruby,
allow more programming and customization within the build scripts. Your team may benefit from this extended functionality

http://www.zennaware.com/cornerstone/
http://versionsapp.com/
http://www.github.com
http://git-scm.com/
https://launchpad.net/
http://bazaar.canonical.com/en/
https://bitbucket.org/
http://mercurial.selenic.com/
http://git-scm.com/
http://www.github.com
https://github.com/markmfredrickson/collab4ss
https://github.com/markmfredrickson/collab4ss/commits/master/

22 The Political Methodologist, vol. 18, no.2

The unindented lines indicate targets, with a list of
dependencies after the colon and a build command on the
following indented line. The make command checks each
target and compares the time stamp on the target with the
time stamp on each dependency. If any dependency is newer
than the target, the dependency is rebuilt using its com-
mand (perhaps recursively building further dependencies)
and then builds the target using its command. For exam-
ple, if data.csv is updated, make will automatically rebuild
figure.pdf before rebuilding paper.pdf.

Using a Makefile simplifies the amount of knowledge
any individual on the team has to have regarding creating
artifacts. Instead of having to remember and manually im-
plement the build process, all a collaborator has to do is type
make at the command line and he will be certain to have a
properly built version of an artifact, say a PDF document.

To some degree, literate programming tools, such as
Sweave, minimize the need establish a clear dependency tree
in a build script. Sweave chunks take the place of having
separate files for loading and transforming data, building
models, and generating figures. Since files are evaluated
top-down, there is an implicit dependency structure, with
later chunks depending on earlier chunks. In order to weave
the file, all chunks are rebuilt, guaranteeing any changes in
early code chunks flow downstream.

While we are heavy users of Sweave, we still think
explicit build scripts have a role to play. First, certain com-
putations can be time consuming, but do not need to be
frequently updated. Simulations and other iterative compu-
tations within a Sweave document increase the time from
making an edit (perhaps to the text) and final output as a
PDF. Writing these computations in separate .R files elim-
inates the need to rerun the computations when no code
or data has changed.5 Second, even when using a single
Sweave file to merge text and code, projects of a reasonable
size will include additional files, especially data. These files
may have their own build steps or simply be dependencies
for the Sweave file. Finally, even when using Sweave, your
team may wish to split up the work into different files for
logical or practical reasons. While version control systems
are powerful tools, sometimes the best way to collaborate
is to divide the work into separate files. Build scripts help
with merging the separate files into a unified whole.

While build files indicate which files should be up-
dated when data change, we encourage social scientists to
write scripts to update data as well. Again borrowing from
software engineering, we have found “database migrations”
to be a useful technique in capturing exactly how and why
data should change.6 While a version control system could

capture how a .csv file changes from one commit to the
next, a migration provides the exact steps by which the data
are manipulated. For example, consider downloading data
from the ANES and the United States Census and joining
it into a single table for analysis in R. The most familiar
approach might be to load both datasets into an interactive
R session, use the merge function to combine them into a
single table, and then save the merged data into a .rda file.
We suggest two alternatives, both of which could be consid-
ered “migrations,” that provide more information about the
steps undertaken to combine the disparate data sources.

The first technique we call “one file to rule them all.”
In this scenario, you add your ANES and Census data to
your version control repository, along with a file data.R.
This file contains the code to load, clean, and merge the
data, possibly saving a data.rda file in the process. You
can enter data.rda as a dependency in your Makefile:

analysis.tex: analysis.Rnw data.rda

R CMD Sweave analysis.Rnw

data.rda: data.R anes.csv census.csv

R --silent --file = data.R

If you or your collaborators need to edit the data at a
later time, you can update data.R. Since it is included in the
Makefile, downstream files will be appropriately updated
as well.

For more complex data needs, you may consider em-
ploying a series of migrations, each building off the pre-
vious. As a convention, label your migrations in order:
001 load data.R, 002 fix coding.R, etc. Rather than
having a single file manage all data manipulations, each mi-
gration is a separate file that loads, manipulates, and saves
the updated data. To run the migrations, collaborators run
the scripts in sequence starting with 001 This migra-
tion strategy has been most successful, for us, when using
mixed languages to update the data. Here, for example, is
a listing of migrations on a project that pulls in hate crime
data, survey information, and Census information from the
web and builds a relational database:7

001_initialize.sql

002_populate.clj

003_remove_redundant_data.sql

004_connect_census_tables.sql

005_hate_groups.clj

006_splc_hatewatch_events.clj

007_coding_events # is a directory of relevant files for 007

Where, as an example, 003 connect census tables.sql

presupposes a data.sql file to create a new table census

from various sub-tables of Census data:

5Recently, caching systems for Sweave have appeared. However, a comparison of such caching systems and the make system is beyond the scope
of this article.

6As the name implies, database migrations are most often applied to databases, as compared to flat files, such as .csv or .dta files.
7.sql files are SQL files, a relational database language, and .clj are Clojure files, a LISP language for the JVM.

http://electionstudies.org
http://www.census.gov

The Political Methodologist, vol. 18, no. 2 23

-- see the .schema for what is in these tables

-- fips gets duplicated as fips:1, fips:2, ...

CREATE VIEW census AS

SELECT * FROM

counties c LEFT JOIN census_area_pop ap ON c.fips = ap.fips

LEFT JOIN census_employment e ON c.fips = e.fips

LEFT JOIN census_foreign_moved fm ON c.fips = fm.fips

LEFT JOIN census_income i ON c.fips = i.fips

LEFT JOIN census_language_education le ON c.fips = le.fips

LEFT JOIN census_occupation o ON c.fips = o.fips

LEFT JOIN census_race r ON c.fips = r.fips;

Splitting migrations into separate files is more overhead,
but provides a finer grained record of changes, even in a
version control scenario. We consider either single files (like
the data.R example above) or multiple files good practice.
Your team should select the method that best suits your
work style and the amount of data cleaning and manipula-
tion required for your project.

Conclusion

While we have stressed software throughout this article, the
technology is the easiest part of collaboration. Habits, con-
ventions, and best practices are much harder to achieve. At
the same time, software suggests (or makes easier) certain
methods of collaboration. Using a version control system
requires collaborators to think about which files to add to
the shared repository and which files are transitory or local.
Similarly, build files help us communicate the steps neces-
sary to build documents to our collaborators. Alternatively,
we could just write detailed README files, but tools such as

subversion, git, and make, add value above and beyond pure
description, though they serve a similar purpose.

Nevertheless, agreeing to use SVN or make is a rela-
tively simple decision, adhering to best practices is much
harder. Version control frees us from calling our collabora-
tors on the phone and saying, “Don’t touch this file. I’m
working on it.” But just because one can check in a file
without merge conflicts does not mean the document is in
a good state. We can still add mutually non-conflicting
changes that lead to disastrous results. Working through
such disasters is still a matter of communication between
collaborators. But even such conflicts are usually quickly
resolved. More difficult is maintaining common style and
usage throughout a project.8

This article has focused on collaboration, but these
suggestions also have benefits for replication. In a sense,
someone replicating your research is simply a future col-
laborator. Encapsulating changes within a version control
system, providing build scripts, and adhering to a consistent
style guide all make it easier for a future researcher to repli-
cate our work.9 These tools also make it easier for other
researchers to evaluate our work by adjusting assumptions,
using different data sets, or applying new methods to our
data. Writing code with a partner at your elbow ensures
that at least one other person understands what the code is
doing, raising the probability that someone replicating your
work will understand it too. Good practices for collabora-
tion make it easier for future partners to understand what
we have done and how to do it even as it saves us from
headaches and lost time in the here and now.

Minimizing the Damage: Converting
LATEXto Word Using TEX2Word

Shawn Treier
University of Minnesota
satreier@umn.edu

The arduous process of submission, review, and re-
vision, ought to end with a joyful final submission, a cold
drink, and a dumb, relaxing movie. Yet, for many LATEX
users, the long ignored or forgotten author guidelines rob
the moment of all joy with the line “only Microsoft Word
format accepted”. For a LATEX user, converting a document

from LATEX to Word can be painful both because it is not
simple to execute but also because it can amount to uglify-
ing a manuscript whose beauty is in part the result of time
and effort by the author. In this essay, I hope to return at
least some joy to (or at least remove some pain from) those
final moments in the publication cycle by discussing what I
think is the least painful way to convert LATEX documents
to Word.

I will focus on the use of a commercial program
TEX2Word, a product of Chikrii Softlab. It is an extremely
cheap program ($45 for academic purposes). One disadvan-
tage is that it works only with Microsoft Word on Windows,
and is unavailable for Mac OS X. In my installation, I have

8You may wish to adopt a style guide for both coding and text. Google publishes a style guide for R. Style guides for the English language are
numerous.

9For an example of a paper using these techniques, see the replication archive for Attributing Effects to A Cluster Randomized Get-Out-the-
Vote Campaign by Ben B. Hansen and Jake Bowers. Interested researchers can build the project from the ground up using a set of build scripts,
including an additional appendix to the paper including details on modifying and extending the replication process.

http://www.chikrii.com
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://tinyurl.com/4d9xxlt
http://pubs.amstat.org/doi/abs/10.1198/jasa.2009.ap06589?journalCode=jasa
http://pubs.amstat.org/doi/abs/10.1198/jasa.2009.ap06589?journalCode=jasa

24 The Political Methodologist, vol. 18, no.2

Word 2003 installed on Windows XP within Parallels run-
ning on Mac OS X. Second, it does require another software
application: MathType ($57 academic), produced by Design
Science, the same company that produces Equation Editor
for Word. This requirement is more helpful than hurtful.
MathType is an extended version of Equation Editor, and
TEX2Word requires the extensions in the program to faith-
fully convert LATEX equations. The resulting equations look
much better than standard Equation Editor, and much eas-
ier to manipulate in Word (Among many other advantages,
MathType allows the user to enter LATEX commands di-
rectly).1

Getting Started The conversion process itself is straight-
forward. TEX2Word installs as an add-in to Word, and
adds “*.tex” files as an option to “File → Open”. In-
stalled with TEX2Word is a pseudo-compiler, with a stan-
dard installation of a LATEX distribution. Opening a TEX
file processes the file through the pseudo-compiler, with an
output file that is Word format. The biggest disadvan-
tage to this process is that non-standard packages cannot
be used. Consequently, before conversion, one must trans-
late anything using a non-standard package into standard
LATEX. For instance, use of dcolumn, endfloat, setspace,
rotating or multirow need to be removed. Nevertheless,
this is not typically a critical problem, as long as the un-
supported package was primarily for the purposes of ap-
pearance, and not essential to display the substance of the
manuscript (e.g., you are out of luck if you really need to
display hierglyphs — incidentally, hyperref is included).
Most of the tasks handled by these packages will be han-
dled by the typsetter anyway. Furthermore, redefinition of
commands through \newcommand does not convert, so all in-
stances must be replaced by the full LATEX commands (same
is true with user defined math operators, which I replace
with \text{operatorname}).

Mathematical Notation Because of the reliance on
MathType, the conversion of the math works extremely well;
even fairly complicated documents look surprisingly good
after the conversion. Naturally, there will be some some
minor adjustments that will need to be made after the con-
version. For instance, in converting an equation such as
yi ∼ N(µ, σ2), the tilde (produced by \sim) appears in the
document, but in a version of Word without MathType,
did not appear. This was corrected simply by editing the
MathType object and retyping \sim. TEX2Word had diffi-
culties with commands such as \bigg, but rarely with any

consequence. In the rare cases where a problem arose, re-
placement with \left and \right or typing directly into
MathType (such as \big| for

∣∣) was sufficient. The com-
mand \intertext, while producing the text correctly, ap-
pears at the end of the previous line, and will need to be
moved to the next line within the MathType object. Simple
equation alignments work perfectly fine (although equations
longer than a page should be broken into separate environ-
ments), but alignments on two or more positions can be
problematic; not surprisingly, since these often require fine-
tuning the spacing in LATEX, and this does not translate
well. Adjustment simply requires editing the MathType ob-
ject and typing a number of \quad’s and \qquad’s to obtain
the desired spacing.

Probably the only aspect of math conversion that was
disconcerting was the treatment of \boldsymbol, which is
recognized by MathType, but does not produce a boldface
font (at least as of version 6.0); furthermore, \pmb is unrec-
ognized (\mathbf works fine though for x and y), and there
is no support for the package bm. Within MathType, one
can insert these characters from menu and select a boldface
font, but that is potentially quite cumbersome with numer-
ous boldfaced parameters. Nevertheless, all of these issues,
and any other small adjustment that may be required, are
extremely minor relative to the amazing conversion for most
math notation.2

Note, displaying program code will be problematic,
since TEX2Word does not convert verbatim environments
or \verb commands. Any “as-is” display will need to
be replaced with copy and paste (one can search for the
\begin{vertatim}'s that will appear in the converted doc-
ument).3

Tabular Floats Conversion of tables works well, and ta-
ble objects are created, but these tables will require some re-
visions within Word. First, \hline or \cline do not work,
so you will need to add the lines yourself, a straightfor-
ward task in Word. Second, you will need to adjust the
column widths. Again, these do not have to be perfect, just
cleaned up sufficiently for the typesetter to see the struc-
ture of the table. Third, alignments in the table will not
carry over from LATEX so those will need to be set in Word.
Fourth, multicolumn specifications will not always carry
over. Sometimes everything is fine, but more often you
will need to delete the row, insert a new row, and recre-
ate the multicolumn setup by merging cells in the table ob-
ject. In my own experience, I once had an extremely large
table for which the multicolumn setup changed the format-

1Note, you should alert the editor that the equations are MathType objects and are not editable without the add-on.
2An occasional issue with text involves comments. The conversion works perfectly fine, but with the TEXshop editor (on Mac OS X) returns

do not automatically appear in the document. The consequence is that text commented out may occasionally appear in the converted document.
3Surprisingly for a conversion program, the commands to display LATEX and TEX do not produce satisfactory output (I have my own arrangement

of the letters saved that I can copy and paste). It should be highly unlikely, though, for any article that needs to be converted to Word to discuss
LATEX specifically (such as this one)!

http://www.dessci.com/en/
http://www.dessci.com/en/
http://www.ctan.org/tex-archive/fonts/hieroglyph/

The Political Methodologist, vol. 18, no. 2 25

ting so much (making every column extremely narrow) that
commenting out the row before conversion was necessary.
Multirow entries must be created by merging cells; a tricky
operation in Word (typically requiring several attempts to
recreate the appearance from the original document).

Figures Figures do not cause any particular problems
during conversion, but do not necessarily appear; all that
appears is the caption (this is true whether the format of
figures is PDF, PNG, JPEG or EPS). In many cases, this is
fine because the journal requires only captions and figure lo-
cations, but no actual figures. The figures though, actually
are buried in the document as picture objects. If one copies
and pastes the caption (and area surrounding the caption),
say to the end of the document, the figure as a picture en-
vironment will be revealed. These are lower quality images,
and the size of the figure will reflect the original dimensions
of the figure in the file, not as adjusted by the options to
\includegraphics. You will still need to send the figures
in original format (likely required anyway); I have also sent
pages from the original LATEX document and indicated those
as the “camera ready” version, indicating that the versions
in the document are useful only in terms of layout. An-
other option is to delete the hidden figures and insert PNG
versions of the figures near the captions.

Bibliography An important issue is how to handle
the bibliography. BibTEX works in the pseudo-compiler
within WordTEX, but it only provides citations in plain

style (i.e., numerical references instead of author-year).
First, in order for TEX2Word to create the citations
and bibliography, include at the end of the document
filename.tex the BibTEX generated document (using
\include{filename.bbl}). Since this is generated under
the desired format in the original LATEX document, the for-
mat of the bibliography will match that format (except for
the numerical designations). The difficult aspect is replac-
ing numerical citations with author-year. One approach, if
one is inclined, is pattern match the citations themselves
in filename.tex, replacing all of the citation commands
with the actual citations (leaving the only conversion for
the list of references). One could also conduct the pat-
tern matching within Word, which I imagine (even with
libraries to do so within Perl or Python) is not worth the
trouble. My personal choice is to simply “find and replace”
on single citations, copying the designations from the open
filename.bbl, and editing directly the few citations that

contain multiple parenthetical entries. This takes about an
hour. I compile a list of the more complex entries during a
final proofreading of the entire document (a necessary step
anyway given the minor conversion problems that will ap-
pear).

General Formatting Finally, a common aspect of the
final edits is formatting: double spacing, endnotes instead
of footnotes, tables and figures at the end of the document.
Because setspace and endfloat do not work in the con-
version, these need to be set within Word. Double spacing,
margins, and justification are easy to set within Word. The
one issue that commonly occurs is the conversion of foot-
notes to endnotes, which will need to be conducted within
Word. The actual conversion to endnotes is straightforward
(select to add a footnote, then instead convert all to end-
notes), but the placement of those endnotes can be problem-
atic. By default, endnotes will be placed at the end of the
document, but they usually must occur after the text but
before the references. The solution to this problem is to (1)
insert a section break between the text and the references,
(2) suppress endnotes for the entire document, then (3) un-
suppress the endnotes, but only for the section before the
references. Then (4) insert a page break between the text
and the references to ensure the endnotes are contained on
a separate page.

Overall, my assessment of TEX2Word matches a col-
umn in the TUG journal PracTEX: “a good bit of cleanup
was required after my TEX2Word conversion; but. . . I can’t
imagine a program that could correctly guess what the per-
fect conversion would be. All in all, using TEX2Word saves a
good bit of time over much more manual methods” (Walden,
2005). I have described the conversion of text, math envi-
ronments, tables and figures, references, and document for-
matting. In all of these aspects, the author will need to
make revisions within the Word document. And as annoy-
ing and time-consuming these revisions may be, they are
straightforward and relatively minor compared to alterna-
tives requiring more extensive reconstruction of the docu-
ment.

References

Walden, David. 2005. “Travels in TEX Land: Word2TEX
Redux, TEX2Word, Plain TEX with Eplian, and
Playing with ‘Thought Breaks’.” The Prac TEX
Journal 4.

http://word.mvps.org/faqs/formatting/footnotefaq.htm

26 The Political Methodologist, vol. 18, no.2

Political Analysis

Political Analysis Update

R. Michael Alvarez and Jonathan N. Katz, co-editors

In January 2010, we began our term as co-editors
of Political Analysis. Our immediate task was to try
to provide a seamless transition from the previous ed-
itorial team to ours; we wish to thank Wendy Tam
Cho, Robert Franzese, Andrew Martin and Christopher
Zorn for their assistance with this transition. During
this same period of time, we have also implemented a
number of changes: First, have transitioned all of the
manuscript submission, review, and revision processes to
ScholarOne (http://mc.manuscriptcentral.com:80/pa). All
submissions and revisions are now processed using this new
system, and we believe it has greatly improved our abil-
ity to quickly and efficiently process manuscripts. Sec-
ond, we have begun to implement a new replication pol-
icy, the details of which are available with our Information
for Authors (http://www.oxfordjournals.org/ our journal-

s/polana/forauthors/index.html) page. The Political Anal-
ysis Dataverse page, which is the primary location for
the replication materials associated with the journal, is lo-
cated at http://dvn.iq.harvard.edu/dvn/dv/pan. Third, we
have established the Editors’ Choice Article award, repre-
senting papers that the editors see as providing an espe-
cially significant contribution to political methodology. Ed-
itors’ Choice articles are available for free online access at
http://www.oxfordjournals.org/our journals/polana/editor
schoice.html. The first Editors’ Choice Article is “Estima-
tion of Heterogeneous Treatment Effects from Randomized
Experiments, with Application to the Optimal Planning
of the Get-Out-The-Vote Campaign,” by Kosuke Imai and
Aaron Strauss. Fourth, in addition to the journal’s website
(http://pan.oxfordjournals.org), Political Analysis is now
on Facebook (http://www.facebook.com/pages/Political-
Analysis/104544669596569) and Twitter (http://twitter.co
m/polanalysis). You can use these social media tools to
stay updated on topics relating to the journal and political
methodology. We have other innovations in the works, so
keep an eye on the journal website, our Facebook page, or
the Twitter feed.

http://mc.manuscriptcentral.com:80/pa
http://www.oxfordjournals.org/our_journals/polana/for_authors/index.html
http://www.oxfordjournals.org/our_journals/polana/for_authors/index.html
http://dvn.iq.harvard.edu/dvn/dv/pan
http://www.oxfordjournals.org/our_journals/polana/editorschoice.html
http://www.oxfordjournals.org/our_journals/polana/editorschoice.html
http://pan.oxfordjournals.org
http://www.facebook.com/pages/Political- Analysis/104544669596569
http://www.facebook.com/pages/Political- Analysis/104544669596569
http://twitter.com/polanalysis
http://twitter.com/polanalysis

University of Illinois at Urbana-Champaign
Department of Political Science
240 Computing Applications Building
605 E Springfield Ave
Champaign, IL 61820

The Political Methodologist is the newsletter of the
Political Methodology Section of the American Polit-
ical Science Association. Copyright 2011, American
Political Science Association. All rights reserved.
The support of the Department of Political Science
at the University of Illinois in helping to defray the
editorial and production costs of the newsletter is
gratefully acknowledged.

Subscriptions to TPM are free for members of the
APSA’s Methodology Section. Please contact APSA
(202-483-2512) if you are interested in joining the
section. Dues are $25.00 per year and include a
free subscription to Political Analysis, the quarterly
journal of the section.

Submissions to TPM are always welcome. Articles
may be sent to any of the editors, by e-mail if possible.
Alternatively, submissions can be made on diskette as
plain ascii files sent to Wendy K. Tam Cho, 240 Com-
puting Applications Building, 605 E. Springfield Ave.,
Champaign, IL 61820 . LATEX format files are espe-
cially encouraged.

TPM was produced using LATEX.

President: Jeff Gill
Washington University in St. Louis
jgill@wustl.edu

Vice President: Robert Franzese
University of Michigan
franzese@umich.edu

Treasurer: Suzanna Linn
Pennsylvania State University
slinn@la.psu.edu

Member-at-Large: Brad Jones
University of California, Davis
bsjjones@ucdavis.edu

Political Analysis Editors:
Michael Alvarez and Jonathan Katz
California Institute of Technology
rma@hss.caltech.edu and jkatz@caltech.edu

	Notes from the Editors
	Articles
	Jake Bowers: Six steps to a Better Relationship with Your Future Self.
	Kieran Healy: Choosing Your Workflow Applications
	Mark M. Fredrickson, Paul F. Testa and Nils B. Weidmann: Collaboration for Social Scientists, or Software is the Easy Part
	Shawn Treier: Minimizing the Damage: Converting LaTeX to Word Using TeX2Word

	Political Analysis

