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Abstract

DRAFT — COMMENTS APPRECIATED
This paper shows that decomposing a time-series into periodic components can provide po-
litically useful information about the shape of aggregate political participation in the United
States. Specifically, it provides statistical tests for the periodicity of the aggregate time series of
political participation and explains how this decomposition and associated tests work. Between
1973 and 1994 there appears to be an annual cycle in the reporting of political participation by
respondents to a series of polls conducted by Gallup 10 times per year. This seasonality has
been noted by in one other publication, by Rosenstone and Hansen (1993), but was explained
as tied to a summer political cycle. In this article I suggest that this discovery has more to do
with annual cycles in the composition of the Gallup sample than politics. I am currently trying
to obtain detailed information on the monthly mail volume into and out of Congress. With this
information, I will be able to test more directly if, despite the changes in sample composition
of the Gallup polls, the political participation of Americans ought to be see as an “output” of
Congressional mobilization or an “input” or in what way the flow of participation into Congress
is related to the flow of mobilization out of it.

Keywords: Frequency domain time series analysis; Fourier analysis; periodogram; squared coherency;
aggregate political participation

1 Why should we care about periodicity?

. . . I am trying to make sense of the periodic outbreaks of mass participation in public
affairs and of collective action in general. (Hirschman, 1982, page 79)

Periodicity is feature of participation as it changes over time that can help us understand it better.
In political science the periodicity of time-series has been mostly ignored in favor of examinations
of trend and lag structure (For the two exceptions that I know of see Beck, 1991; Rosenstone and
Hansen, 1993).

Detecting and explaining the periodicity in political participation has substantive implications.
Say, for example, that periodicity maps onto presidential electoral cycles. If this were the case,
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then we might think that people participate when national (instead of local) institutions provide
opportunities, or when attention is focused on politics by national media coverage of elections. This
understanding of political participation would indicate perhaps yet another sign of the decline in
“civic society” that worries communitarian and civic republican scholars. What if the periodicity
in political participation instead is discovered to cycle at a very slow rate? This might suggest that
what appears to us as a declining trend is actually just the downward swing of a slowly shifting
system (perhaps like the one envisioned by Hirschman (1982)).

In their 1993 book, Rosenstone and Hansen (1993) showed that Americans tended to write to
Congress, attend meetings, and to sign petitions more in the summer than in other months. Al-
though they did not provide any information about how they arrived at this estimate, they argued
that the summer is special because it is when bills come to the floor for debate and voting and
it is the season when petitions must be signed in order to get candidates and issues on ballots.
Their discussion of seasonality aimed to provide more evidence for their general argument that the
political participation of individual Americans is driven, in large part, by mobilization on the part
of politicians and activists. Although I do not dispute their general claim, I analyze the same time-
series that they used [extended by 4 years from 1990 to 1994] in order to shed more light on (1) how
one might rigorously test for the existence of cyclicality in the time-series of political participation
and (2) the meaning of an annual cycle discovered within the 12 different participation activities.

I present several different methods for detecting periodicity and then also show how one might
detect dynamic relationships between two time-series which have periodic components.

2 The Data

From 1973 to 1994, the Roper organization fielded 10 national surveys each year of about 2,000
Americans.1 During each of these 207 surveys, respondents answered a series of questions about
their participation in politics in the following format:

“Now here is a list of things some people do about government or politics. (HAND RESPONDENT
CARD) Have you happened to do any of those things in the past year? (IF “YES”) Which ones?

1. “Written your congressman or senator”

2. “Attended a political rally or speech”

3. “Attended a public meeting on town or school affairs”

4. “Held or run for political office”

5. “Served on a committee for some local organization”

6. “Become[Served as] an officer of some club or organization”

7. “Written a letter to the paper”
1See the Notes section at the end for more details on how this dataset was constructed.



8. “Signed a petition”

9. “Worked for a political party”

10. “Made a speech”

11. “Written an article for a magazine or newspaper”

12. “Been a member of some group like the League of Women Voters, or some other group [which
is] interested in better government”

3 Detecting Periodicity: The Ocular Method

The first, and easiest, method for detecting periodicity in a time series involves merely looking
at the data. Figure 1 shows a set of data for which an quick look is all that is necessary. The
percentage of the voting age population that actually turns out to vote has a clear 4 year cycle. In
fact the distinction is so clear that one might even think of the vote turnout in presidential election
years and in non-presidential election years as two separate series! A smoothed line with a wide
bandwidth has been fitted to this series in order to display that the decline in turnout over time.2
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Figure 1: Voting Turnout 1960-1998

Figures 2 and 3 display the series for the 12 series of the Roper data. What was clear from looking
at information about vote turnout is no longer clear. The smoothed lines (using 50% of the nearest
neighbors as a bandwidth) do show non-linear trends of decreasing proportions of the citizenry
participating, but if any periodicity exists in these series, it is not discernible to the naked eye.
It is worth noting that each of the different activities is plotted on a different scale so that the
fluctuations that might indicate periodicity are magnified. It is interesting to see that while nearly

2For details on the smoothing and analysis, see the “Notes on Analysis” section at the end of the paper.



26% of the sample reported attending a local public meeting in 1973, in the same year about 1%
reported holding or running for an elected office, and about 7% reported working for a political
party. Thus, certain acts appear more difficult than others, or at least less popular than others.
Despite decreasing (nonlinear) trend across all acts, each one looks slightly different. Due to this
diversity in political participation, the rest of the analyses in this paper display the results for all
twelve acts. The disadvantage will be that the reader will feel overwhelmed in information. The
advantage will be that any one finding will have essentially twelve replications on different types of
behavior.

4 Detecting Periodicity:
Regression on Lagged Values

If the ocular method doesn’t work on the seemingly noisy data of the participation series, then one
must turn to other methods. One technique for characterizing the temporal structure in time-series
that has been popular in economics has been to inspect the Autocorrelation function (ACF) of the
data. One can think of the ACF as the result of regressing the series upon lagged values of itself,
and the Partial Autocorrelation function (PACF) as the result of regressing the series upon lagged
values of itself controlling for the influence of intervening lagged values.

We can calculate the coefficients which define the ACF using the following formula:

ACF = rk =
∑N−k

t=1 (xt − x̄)(xt+k − x̄)∑
t=1 T (xt − x̄)2

(1)

Just as a correlation coefficient is a standardized version of a covariance, the ACF is a standardized
version of an AutoCovariance, which is defined as:

ck =
1
N

N−k∑

t=1

(xt − x̄)(xt+k − x̄) (2)

And rk = ck/c0

The following figures show ACFs and PACFs for the 12 series which have been detrended and
demeaned via subtracting the smoothed trend lines plotted in Figures 2 and 3. The plots cut off
the ACF at lag 0 since that value is always 1. The dotted lines display the 95% confidence region
for the null hypothesis that there is no temporal structure in the data — i.e. that, just as white
light is combination of light at all frequencies such than no single frequency can predominate, the
time-series is white noise, with no single temporal aspect dominating. Each vertical line plots the
value for the ACF or PACF — longer lines display stronger relationships at that lag. One would
expect about 1 out of every 20 coefficients to be longer than the confidence region merely by chance
(it is a 95% confidence region after all).

The ACFs and PACFs show that there appear to be strong relationships between the proportions
reporting participation in subsequent surveys (this is shown by the strong relationships at lag 1).
The plots also show clusters of negative relationships around lags 12-17. Since this occurs in for
multiple activities, these relationships are probably not just chance fluctuations. But, it is not



Figure 2: Political Participation, Series 1-6
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Figure 3: Political Participation, Series 7-12
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Figure 4: ACFS and PACFS for Series 1-3
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exactly clear what this might mean. The sampling frequency of these time-series is 10 times per
year. Thus, an annual cycle should show up at lag 10 rather than 12-17. Overall, the ACFs and
PACFs do not display much information that is easily interpretable about periodicity.



Figure 5: ACFS and PACFS for Series 4-6
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Figure 6: ACFS and PACFS for Series 7-9
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Figure 7: ACFS and PACFS for Series 10-12
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5 Detecting Periodicity: Regression on Sinusoids

Since neither the ocular nor the ACF/PACF approach seemed to provide much help in detecting
periodicity, it makes sense to try something else — namely using mathematical functions that are
periodic themselves to characterize the time-series. This method is the most basic approach to
what is known as frequency domain time series analysis while the ACF/PACF approach tends to
be the basic approach of what is known as time-domain time series analysis. [insert more here on
the distinction, what kinds of data and questions are useful for each kind — actually, perhaps move
this to the front] Since sine and cosine functions are periodic, one can do a least squares fit of a
time-series with combinations of sine and cosine functions as independent variables as follows:

yt = α +
∑

λ

(aλ cos(2πtλ) + bλ sin(2πtλ)) + ui (3)

where λ is the frequency in cycles per year. In this case, I chose λ = 1/10, 1/5, 1/4, 1/3, 1/2, 1, 2, 3
to represent 10 year, 5 year, 4 year, 3 year, 2 year, 1 year, 1/2 year, and 1/3 year cycles.

Figures 8 and 9 plot the estimates for a and b from equation 3 for the values of λ that I plugged
in. The coefficients are plotted as circles with bars extending ±2 standard errors around the point
estimates. Each panel has a horizontal line at zero. To the extent that a point and it’s associated
error bar do not touch the zero line, we can say that such a coefficient estimate is not zero. One
pattern which leaps out of these plots [all plotted with the same y-axis] is that there appears to be
an annual pattern — i.e. that the sin and cosine functions at a 1 year cycle tend to be strongly
positive and different from zero. Of course, each λ has two coefficients here. So it is a bit difficult
to interpret the situation, say, where the cosine function is strongly different from zero but the sine
function is nearly equal to zero.3 It is also interesting to note very few strong relationships with
electoral cycles at frequencies of 4 or 2 — or at least that where these relationships clear zero, they
are not as strong as the estimates for the annual periodicities. Another notable aspect of these
plots is the extent to which the sinusoids tend to have any explanatory power [such as the series
capturing writing to members of the house and senate] versus series that seem to have no periodic
relationships at least at the frequencies I choose [such as the series capturing the proportion of
Americans who hold or run for electoral office]. Basically this difference is due to the differences in
scale and variance of the series themselves [probably should plot these on different scales].

The advantage of this approach is that one can fit periodic functions directly using well-understood
techniques and can produce statistical tests of the extent to which the different periodic components
contribute to the series overall. Thus, if the question is about periodicity, this method is much
more direct. The disadvantages of this approach include those attendant to any use of OLS, such
as violation of assumptions (at least for estimating the standard errors of the coefficients). It was
also annoying to have two coefficients returned for each frequency — one would be enough. Finally,
one may not choose the correct frequencies at which to run this regression — and because one
must have two coefficients for each frequency, the number of frequencies that are testable can eat
up degrees of freedom quite rapidly.

3Actually, as we’ll see, this can be interpreted as saying that the imaginary part of the Fourier coefficient is nearly
zero. But for now, two coefficients per frequency is clearly one piece of information too many.



Figure 8: OLS Coefficients for Series 1-6
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Figure 9: OLS Coefficients for Series 7-12
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6 Detecting Periodicity: The Periodogram

The most elegant method for detecting periodicity in a stationary time-series is via the peri-
odogram.4 On can think of the periodogram as an analysis of variance in which the variance
of a stationary time-series, Y (t), is decomposed into periodic parts. This decomposition works by
approximating the time series with a trigonometric polynomial, where

Y (t) =
T/2∑

λ=−T/2

D(λ)e−i2πλt ≈
∑

(A(λ) cos(2πλt) + B(λ) sin(2πλt)) . (4)

Notice that the right-hand side of this equation looks a lot like the regression on sinusoids that I
displayed above. It turns out that D(λ) is an elegant and useful way to combine the information in
A and B into one number. The raw periodogram, I(λ), turns the coefficients contained in D(λ) into
magnitudes: I(λ) = 1

T |D(λ)|2. It turns out that one can get consistent estimates of the amount
of variance explained in a series by smoothing over nearby values of the raw periodogram. [more
here? or in the appendix?] Figures 10 and 11 show the smoothed periodograms5

In each plot the black lines represent the smoothed periodogram estimates for D(λ) calculated for
each series. The dark gray rectangle represents the 95% confidence region for the null hypothesis
that these series are white noise. The lighter gray lines tracking the periodogram values are the
pointwise 95% confidence intervals for the null hypotheses that the value of the periodogram es-
timate I(λ) is actually the population value.6 One advantage that the periodogram has over the
ACF and PACF functions is that one can easily derive the sampling distribution of the periodogram
estimates in general, not just for the situation in which the series is white-noise, whereas for the
ACF and PACF functions is it more difficult to represent uncertainty about the actual estimates
seen as null hypotheses. [fix this, too confusing] The frequencies at which the black lines emerge
from the white-noise regions of the gray rectangles are those which have the most (non-negligible)
power in determining the variance of the series. As we can see, most of these series are dominated
by non-cyclical components [or at least components which are not easily distinguishable from white
noise given the current length of the series]. However, the places where the periodogram does
emerge from the white-noise region tends to be at the frequency of 1 cycle per year.

Table 1 summarizes these graphs by listing the top five “peaks” (ranked in terms of power) in
the periodogram for each series, and marking the peaks which exceed the white-noise region. Most
series only had one or two frequencies at which powerful peaks occur. The most powerful peaks were
at (or very close to) an annual frequency (for 7 out of the 12 series). The periodograms revealed
powerful 2 year cycles (peak frequency=.5 cycles per year) for “Attended a political rally” and
“Worked for a political party”. Petition signing seems to have a 6 month cycle (peak frequency=2
cycles per year).

4I haven’t mentioned stationarity yet. Probably need to explain that both the ACF/PACF method, the regression
method, and this method all require stationary time-series; and that I forced these series to be roughly stationary by
removing the non-linear trend lines that I displayed earlier. Removing a linear trend would not have been enough.

5The periodograms shown employed smoothing over the 3 nearest neighboring points using a Daniell smoother
[i.e. a moving average that gives half weight to the points at the end of the smoothing window] with a 10% taper.

6Actually “population” here is a bit misleading in the context of time-series. Rather, the idea is more that each
of these series can be thought of as if it were sampled from an “ensemble” of series. Thus, the confidence intervals
refer to the confidence one might have that the “ensemble” value is close to the estimated value.



Table 1: Peak Frequencies (cycles/year) for Smoothed Periodograms

Rank of Peak
1 2 3 4 5

Written your congressman or senator 1.02 0.51 0.83 0.28 3.01
Attended a political rally or speech 0.51 0.23 0.97 0.37 3.01
Attended a local public meeting 0.97 3.01 0.37 1.67 0.23
Held or run for political office 3.01 2.41 2.69 1.02 0.23
Served on a local committee 0.97 0.37 2.64 0.23 4.35
Served as a local officer 0.97 1.67 2.31 2.64 0.37
Written a letter to the paper 0.97 0.37 3.01 4.54 1.99
Signed a petition 1.99 0.97 0.37 3.01 1.62
Worked for a political party 0.51 2.96 1.99 2.31 1.02
Made a speech 1.02 0.37 3.01 1.67 2.64
Written a magazine/newspaper article 1.02 0.37 2.87 2.69 4.49
Been a member of better govt group 3.01 0.23 1.02 1.71 1.34

Bold numbers are peaks outside (or touching) the 95% white noise confidence interval.

There is not much evidence of long/slow cycles [i.e. 4 year+ cycles]. Nor much evidence of short
(within year) cycles. This is surprising given the fact that much of American political life is linked
closely with elections. It does make sense that party work and rally attendance should be closely
linked to a 2 year cycle — but inspection of the vote turnout figure earlier in the paper would have
suggested much stronger 4 year cycles.



Figure 10: Smoothed Periodograms for Series 1-6
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Note: The black lines represent the smoothed periodogram for each variable. The light gray region in each
plot represents the 95% confidence region given a null hypothesis of white noise. The dark gray lines about
the periodogram estimate represent the point-wise 95% confidence intervals for the estimated values.



Figure 11: Smoothed Periodograms for Series 7-12
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6.1 Block Resampling

Although we know that the smoothed periodograms provide consistent estimates of the power of
the periodic components of the series, in the case of real-world data analysis, it is always easy to
wonder whether any given result should be trusted. Does the periodicity depend on the length of
the series? Or where the series began? If this were a naturally stationary series, the answer would
be clearly “no”. In fact, these data are not naturally stationary, but were demeaned and detrended
in order to do the analysis. Perhaps something about the specific composition of this series may
be biasing the results.

One way to convince myself that the results are robust is to take pieces each series and to check the
periodograms for each pieces. The idea is that, it the series is not stationary then periodograms
calculated for different pieces would show different types of periodicity. If a series were stationary
— such that the temporal structure in the series only depends on the relationships between the
measurements NOT the actual moment in time that the measurements were made. The problem
with such an approach would be that I would not be sure which pieces to choose, at what length,
and where they should begin and end in the series. The obvious solution to this problem is to
choose many such pieces, beginning and ending in many places. Davison and Hinkley (1987)
suggest a number of such methods, known as “bootstrap” methods [?more on what the bootstrap
is?]. However, they focus specifically on improving estimating of certain quantities, such as the
coefficients for ARIMA models. They do also describe some techniques for estimating values in the
frequency domain, such as I(λ). But even they advise against using “phase scrambling.” (page
411). They also describe procedure for calculating improved estimates of the confidence intervals
for periodograms. However, my desire was whether the periodogram would even estimate any
power at the same frequency within different subsections of the series rather than on a more robust
estimate of the confidence interval around the current point estimates. Thus, inspired by Davison
and Hinkley’s chapter on “Complex Dependence,” I implemented a form of block resampling in the
following steps [repeated 1000 times per series] with the goal of checking that the periodogram of
the whole is a reasonable representation of the periodicity in these series:

1. Choose at random a block length no less than 40 surveys and no greater than 207 surveys.

2. Choose at random a starting point between 1 and 208-40=168.

3. Calculate the frequency at which the smoothed periodogram has its maximum for the resulting
block of data.

Figures 12 and 13 display density estimates with rug plots for the results of the block resampling.7

For example, the block resampling in the case of writing to one’s member of congress or senator
overwhelming finds that the most powerful frequency is that 1 cycle per year over the 1000 re-
samples of different blocks. There were two exceptions to this general confirmation that the artificial
creation of stationarity was enough to truly allow the periodogram to work [really need to talk about
stationarity up front — including note that I checked for stationary by fitting linear models to the
series after subtracting out the nonlinear trend]. The two exceptions, “Served as a local officer” and

7[describe the density estimation]. “Rug plot” refers to the plotting of the actual values of a variable as small ver-
tical lines on the x-axis of the plots, thereby providing a sense for the actual distribution of the results to complement
the information provided by the density estimate.



“Signed a petition” had the 2nd highest peak switch with the first. Such that the strongest peak
for serving as a local officer after the block resampling was at a six month cycle (2 cycles/year),
and signing a petition had a much stronger annual cycle after the resampling.

Figure 12: Resampled Peak Frequencies: Series 1-6
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Figure 13: Resampled Peak Frequencies: Series 7-12
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7 A Season for Participation

The finding of annual cycles is surprising. If there is a season for participation, when does it peak?
How should we move back to the time-domain from the frequency domain?

For now, I will use predicted values from the regressions presented above to identify the months in
which participation seems to peak. One might also decompose the series into seasonal or periodic
pieces by smoothing over months controlling for smooth trend (See Loader (1999); Cleveland (1993);
Cleveland et al. (1990)). One might also demodulate the series to construct a band pass filter [in
essence to smooth over frequencies that are considered “noise”.] (See, for example, (Bloomfield,
2000; Brillinger, 1988, 1981). For now, simple predicted values seem to work fine to show that
participation peaks in the summer. Figures 14, 15, and 16 show the results. Each panel plots
the actual, demeaned/detrended series in light gray and overlays the series that would have been
predicted from the regression equation 3. At each point that the predicted values come to a peak
(in a local sense), that point is labeled with the name of the month. Although my peak labeling
algorithm was not completely successful at always labeling only the very highest peaks, it it still
clear from these plots that the summer is when people seem to be reporting more participation.



Figure 14: OLS Predicted Values: Series 1-4
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Figure 15: OLS Predicted Values: Series 5-8
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Figure 16: OLS Predicted Values: Series 9-12
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8 What Drives Participation?

The story doesn’t end there. In Rosenstone and Hansen (1993)’s account, this seasonality with
peaks in the summer is evidence of close ties between moments of activity on Capitol Hill and the
activity of citizens. They cite some very intriguing evidence — for example, they managed to get
data on monthly volumes of mail sent from Congress, and they report that the volume of mail sent
also peaks in the summer. Thus, they argue, the summer peak in participation (at least regarding
letter writing) is an output where mail from Congress is the input. Unfortunately, they do not
display the data on mail from Congress, nor do they try to relate it to the participation series in
any analytic manner. I have begun to try to get data on 1) amount of mail received by Congress
each month for the 1973-1994 period and 2) the amount of mail sent by the Congress over that
period. Using the methods that I will present in this section, I ought to be able to analytically
assess whether the aggregate participation (again, at least for letter writing) is an input or an
output regarding the presumed peak of Congress’ summer mailings.

While I wait for that data, I am skeptical that one would see all participation activities having an
annual cycle peaking in the summer based on Congressional mailings — or even the moment at
which there is most media coverage of Congressional debates and votes.8 In fact, there is another,
alternative explanation for what Rosenstone and Hansen report and which I found in the previous
sections of this paper: that the sample of people answering the survey fluctuates in an annual cycle.
Remember, that the actual survey question that was asked said:

“Now here is a list of things some people do about government or politics. (HAND
RESPONDENT CARD) Have you happened to do any of those things in the past year?

That is, the annual cycle that I’ve been discovering is in fact an annual cycle in reports about
behavior over the past year NOT in reports of behavior at the moment of the survey. Rosenstone
and Hansen (1993) realize this but argue, based on (Hansen and Rosenstone, 1983), that asking
about the past six months and the past year produce the same results. Thus, they say that the
Roper data are reflecting participation within a very short time of the interview data rather than
participation across the whole year. The evidence they display in (Hansen and Rosenstone, 1983)
is compelling, but as I check, I decided to see if there was any discernible relationship between
the activities of participation and the composition of the sample. For sample composition, I only
choose three variables: the proportion of the sample reporting that they were unemployed; the
proportion of the sample reporting that they had a college degree; and the proportion of the
reporting their race as African-American. I chose the measure of education and race based on
previous research on political participation which emphasizes the importance of these two factors
in predicting participation at the individual level (See,e.g. Verba, Schlozman and Brady, 1995).
I chose unemployment because it knew it would have both short and long-term cyclical behavior
— with the thought that those individuals who were caught at home by the Gallup researched
in the summer might be different from those respondents who were at home and available to be
interviewed at different months.

The top row of figure 17 shows the three variables in light gray with both linear and nonlinear trend
lines in dark gray and black respectively. The second row shows the series after subtracting the

8Congress tends to use the spring in research and committee work and the summer for votes and debates (cite).



nonlinear trend. Although detrended unemployment series still shows some nonlinear relationship,
it is very slight and the linear trend is flat. The medium-term periodicities in unemployment remain
after removing the long-term trend. Although the upward trend in the proportion of respondents
reporting a college education dwarfs any hint of periodicity in the top row, after removing the trend
there does seem to appear some gentle cyclical behavior. The series containing the proportion of
African-Americans in the sample seemed to be gently increasing over time, but the overall shape
of this series does not change much after detrending.

Figure 17: Change in the Roper Sample Over Time: Unemployment, Education, Race
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Note: Unemployment is the proportion of people reporting that they had no job and were not students,
retired, or housewives. College+ refers to the proportion of respondents reporting 13 or more years of
education. Black refers to those respondents reporting African-American as their race.
The smooth lines are locally linear, and were estimated with a nearest neighbor bandwidth of .8 using locfit

Figure 18 displays the smoothed periodograms calculated for the three detrended sample compo-
sition measures. Each of them displays some very low frequency periodicity. Often high power at
low frequencies can be an indication of non-stationary data. Fearing that the nonlinear detrending
had somehow either induced trend or allowed some linear trend to remain, I also generated the
periodograms for the series with a linear trend and mean removed so that I could guarantee lack
of linear trend. However, the same pattern emerged. We saw in Figure 17 that unemployment
appeared to have a perhaps 10-15 year cycle, the peak frequency ought be to be at roughly .1
(i.e. 1/10th of a cycle per year). The proportion of college education also looked to have a long
cycle, which also seems to appear in the periodogram. The series for proportion African-American
doesn’t really display much power outside of the white-noise band at all.



Figure 18: Periodograms of Unemployment, Education and Race
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9 Relationships between Sample Composition and Political Par-
ticipation

There are two main methods for detecting relationships between multiple time-series: inspecting
plots of cross-correlation functions [which are a bivariate form of the ACF] and inspecting plots of
the squared coherency and phase of the two series [coherency and phase provide information about
the frequencies at which two, or more, time-series may be most strongly related].

Figures 19 to 24 display the cross-correlation functions between each of the twelve participation acts
and the three sample composition series. The dotted lines on each panel show the 95% confidence
interval for the null hypothesis of white noise [i.e. no relationship between series]. There are two
panels for each pair — the left panel shows the cross-correlation coefficients for negative lags, and
the right panel shows the cross-correlation coefficients for positive lags [probably should redo this
as one single panel per pair since the relationship at lag 0 is not clear from this plot]. One would
expect about 1 out of every 20 coefficients to be stronger than the white-noise region merely by
chance. Spikes at negative lags would indicate that the sample composition variable measured in
previous surveys is having an effect on the present values of a given participation series. Spikes at
positive lags indicate that the sample composition variable measured at subsequent, future, surveys
seems to be strongly related to current values of the participation series.

Overall, there appears to be nearly no relationship between the participation series at the sample
composition series. For example, there seems to be no relationship between the proportion of the
population who are unemployed and the proportion of the population who attempt to contact
their members of congress. There does seem to be a relationship between the proportion of the
population attending rallies and unemployment [the top right two panels in Figure 19] — meaning
that ?current attempts to contact members of congress seems to be related to unemployment as
reported about 1.5 years in the future?. There is a similar relationship between petition signing
and unemployment in the middle row, left two columns of Figure 20.

Other notable relationships include: the contacting members of congress preceding proportion
college education in the sample by about 1.5 years; a strong relationship between the proportion of
college educated in the sample and attendance at rallies [this relationship appears contemporaneous



from Figure 21]. Overall, however, these plots do not tell us much about periodic relationships
[although some of the cross-correlation functions do display seemingly sinusoidal patterns — more...]

[fix plots – titles and combine into single panels]

9.1 Cross-correlation Functions

Figure 19: Cross-Correlation Function: Unemployment with Series 1-6
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Figure 20: Cross-Correlation Function: Unemployment with Series 7-12
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Figure 21: Cross-Correlation Function: College Education with Series 1-6 [fix titles]
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Figure 22: Cross-Correlation Function: College Education with Series 7-12 [fix titles]
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Figure 23: Cross-Correlation Function: Proportion Black with Series 1-6[fix titles]
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Figure 24: Cross-Correlation Function: Proportion Black with Series 7-12[fix titles]

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by Letter

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

Letter by Unemployed

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by Petition

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

Petition by Unemployed

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by Volunteer

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

Volunteer by Unemployed

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by Speech

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

Speech by Unemployed

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by Article

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

Article by Unemployed

-2.0 -1.5 -1.0 -0.5 0.0
-0.2

-0.1

0.0

0.1

0.2

Unemployed by GoodGovt

0.0 0.5 1.0 1.5 2.0
-0.2

-0.1

0.0

0.1

0.2

GoodGovt by Unemployed



9.2 Coherency

The frequency domain analog to the cross-correlation function is known as the “coherency” be-
tween series. The coherency provides estimates of linear time-invariant relationships between two
stationary time-series. Just as the temporal structure in a univariate time-series can be represented
by the “spectrum” of that series, as estimated by the discrete Fourier transform and displayed by
the smoothed periodogram, so too can the relationship between two (or more) time-series be rep-
resented by the “cross-spectrum” which is estimated via the “coherency” and displayed as as the
“squared coherency” and the “phase”. [FIX: ?add discussion of spectrum up front to show that
the periodogram is an estimate, and that the uncertainty estimates for the periodogram are based
on the spectrum]

The cross-spectrum is usually defined as:

sX,Y (λ) = E(D(λX)D(λX)), (5)

where D(λ) is the discrete Fourier transform (DFT) defined by the relation in (4). This time, the
DFT is calculated for each of the two variables, say, X(t) and Y (t). The symbol D(λY ) refers to
the complex conjugate of the DFT of Y (t). The complex conjugate of a complex number a + ib
is defined as a − ib and denoted a + ib. A complex number multiplied times its own conjugate
is a squared distance measure — i.e. it converts a complex number into a real valued magnitude
measure.

The usual procedure for estimating the cross-spectrum is to use the squared coherency, which can
be interpreted as the correlation between the random coefficients, D(λY ) and D(λX) and which
can be written as follows:

κ̂2
X,Y (λ) = |Cor(D(λX), D(λY ))|2 =

|E(D(λX)D(λY ))|2
|ED(λX)|2|ED(λY )|2 =

|ŝX,Y (λ)|2
ŝX,X(λ)ŝY,Y (λ)

, (6)

where ŝX,Y (λ) refers to the estimated cross-spectrum between the series X(t) and Y (t), ŝX,X(λ)
and ŝY,Y (λ) refer to the estimated univariate spectra of each of the series X(t) and Y (t). Basically,
the squared coherency is the correlation between two series at a given frequency and it ranges from
0 [indicated no relationship] and 1 [indicated a strong relationship].

Following Bloomfield (2000)’s terminology, one can write approximate 95% confidence intervals for
κX,Y (f) 6= 0 as:

tanh(arctanh(κ̂X,Y (f)± 1.96

√
g2

2
)), where g2 =

2
df from ŝX,Y (f)

(7)

And, approximate 95% confidence intervals for κX,Y (f) = 0 as:

1− (1− p)g2/(1−g2), where p = .95 (8)

That is, equation 7 shows how to generate pointwise confidence intervals around estimates of the
squared coherency, given that the estimates are not zero. Equation 8 shows how to calculate



confidence intervals for the situation where there is no relationship between the series, i.e. when
the squared coherency is zero. [more here on normal approximation? or probably move all of this
stuff to the appendix.]

Another important statistic summarizing information about the relationship between two stationary
time-series in the frequency domain is the estimated phase of the bivariate (i.e. combined) series.

estimated phase = φ̂X,Y (f) = Arg(κX,Y (f)) (9)

[explain “Arg”, “tanh”, “arcsin” probably in the Appendix where all of this stuff should move]

Approximate 95% confidence intervals can also be written for the phase as:

φ̂X,Y (f)± 1
2π

arcsin


tv(.05)

√√√√ g2

2(1− g2)

{
1

κ̂2
X,Y (f)

− 1

}
 , where tv(α) = 100α% of t-dist, and v = 2/g2−2

(10)

The phase is only important where the squared coherency is not zero. However, where there does
appear to be significant squared coherency between series, the shape of the phase indicates lagging
and leading relationships between series. To the extent that it slopes down [over frequencies that
have non-zero coherency] then the yt series leads the xt series [that fluctuations in yt seem to
precede fluctuation sin xt], to the extent that it slopes upward [over frequencies that have non-
zero coherency] then it indicates that the reverse [that fluctuation in the yt series seem to follow
fluctuations in the xt series].

Figures 25 to 30 show plots of the squared coherency and phase for each of the three sampling
composition variables with each of the twelve participation activities. A horizontal line is drawn
at zero in each plot, and confidence intervals are plotted in light gray around the black lines
indicating squared coherency and phase. [Add somewhere that one can only estimate coherency
from a smoothed values of the periodograms – explain this]. The frequencies at which the squared
coherency is estimated to be near 1 are those frequencies at which there appears to be a relationship
between the two series. Similarly, in the regions in which coherency is high, the local slope of the
phase can indicate leading versus lagging relationships.

For example, there appears to be a strong relationship around a cycle of one year between the pro-
portion of respondents in the sample reporting writing to members of congress and the proportion
of respondents in the sample reporting being unemployed. In that region the phase is less than 0
and slopes up. [what does it mean to be less than 0?] This positive slope indicates [I think!] that
unemployment seems to follow writing to members of Congress!!?? Similarly holding or running for
public office seems to be related to unemployment, but the phase is flat and negative – ?indicating
that both series synchronize their fluctuations at an annual cycle?

[much more here — interpret each one]

9.3 Squared Coherency and Phase



Figure 25: Squared Coherency and Phase: Unemployment with Series 1-6
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Figure 26: Squared Coherency and Phase: Unemployment with Series 7-12
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Figure 27: Squared Coherency and Phase: College Education with Series 1-6
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Figure 28: Squared Coherency and Phase: College Education with Series 7-12
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Figure 29: Squared Coherency and Phase: Proportion African-American with Series 1-6
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Figure 30: Squared Coherency and Phase: Proportion African-American with Series 7-12
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10 Summary

...the change from the fifties to the sixties and then to the seventies and other such
alternation in earlier periods raise the question whether our societies are in some way
predisposed toward oscillations between periods of intense preoccupation with public
issues and of almost total concentration on individual improvement and private welfare
goals.”(Hirschman, 1982, page 3)

This project is less ambitious and focuses on a shorter time period than that analyzed by Hirschman.
From 1973 to 1994 aggregate political participation has decreased across a range of activities. Since
so much attention has already been focused on this trend, this paper has explored another important
characteristic of any time-series — periodicity.

Periodic oscillations definitely exist in this data, but they are predominantly annual peaking in the
summer months.

The annual cycles are surprising given priors that electoral institutions ought to largely structure
political participation. Previous inspection of the time-series also spurred one set of previous
analysts to found an annual cycle,peaking in the summer, in 3 of the 12 activities analyzed here,
and in a version of the time-series which ended in 1990 rather than in 1994 (Rosenstone and
Hansen, 1993). Rosenstone and Hansen (1993) suggested that this annual cycle shows how tightly
the political activity of Americans is bound to the movements of Congress and specifically the
mobilization attempts surrounding the debates and vote on bills typical in the summer months.
Since the actual survey questions ask about participation over the past year, this explanation
sounds less plausible — and another explanation suggests itself — that the fluctuations are due to
systematic variation in the sample composition in the Gallup samples. This paper has shown [I
think!] that this is indeed the case.

I am currently trying to obtain detailed information on the monthly mail volume into and out of
Congress. With this information, I will be able to test more directly if, despite the changes in
sample composition of the Gallup polls, the political participation of Americans ought to be see as
an “output” of Congressional mobilization or an “input” or in what way the flow of participation
into Congress is related to the flow of mobilization out of it.

Appendices

A How it works

“Spectral analysis is essentially a modification of Fourier analysis so as to make it suitable for
stochastic rather than deterministic functions of time.”(Chatfield, 1996, page 105)



A.1 The Univariate Periodogram

Fourier analysis decomposes the variance of a time-series into periodic components. The main
idea behind this analytic strategy is to approximate a stationary time-series by a trigonometric
polynomial. For real valued time-series Y (t) with EY (t) = 0 this Fourier polynomial can be
written as follows:

Y (t) = a0 + 2
∑

0<λ<T/2

(A(λ) cos(2πλt) + B(λ) sin(2πλt)) [+A(T/2) cos(2πtT/2)] , (A1)

where the term in brackets is included only when T (the length of the series) is even.

The A and B terms in (A1) can be thought of as representing the “power” that oscillations at a
particular frequency λ have in accounting for the variance of the series. Although sinusoids are not
the only periodic functions available, their orthogonality (among other properties) has allowed the
statistical properties of A and B to be easily developed.

It is often more convenient to express this polynomial using one complex number D(λ) instead of
the A(λ) and B(λ) above. This form depends on what is known as Euler’s equation(Simon and
Blume, 1994, page 883)9 which shows that eix = cos(x) + i sin(x). Equation A1 can be re-written
as

Y (t) =
∑

λ

D(λ)e−i2πλt, (A2)

where −T/2 < λ ≤ T/2. This equation gives a formula for the complex coefficients D(λ). These
coefficients are known as the Discrete Fourier Transform (DFT) of the time-series Y (t) and are
most often calculated via the Fast Fourier Transform (FFT) algorithm10.

D(λ) =
T∑

t=1

Y (t)e−i2πλt (A3)

The coefficients in (A1) and (A2) are related to each other by the following identities:

A(λ) = D(λ) + D(λ−j) (A4)
B(λ) = i (D(λ) + D(λ−j)) (A5)
D(λ) = (A(λ)− iB(λ))/2 (A6)

D(λ−j) = (A(λ) + iB(λ))/2 (A7)

(Stromberg, 1981, page 503), where the j and −j refer to frequencies chosen on either side of 0.
9aka the Euler relation(Bloomfield, 2000, page 41)

10The FFT algorithm is available in most data analysis packages. In S the function is called fft



The main tool for displaying and analyzing the coefficients D(λ) is the periodogram, which is built
from the sequence

I(λ) =
1
T
|D(λ)|2 (A8)

The process of computing I(λ) converts the complex numbers D(λ) into real-valued magnitudes
that we can compare with each other and which support hypothesis testing.

For all of the periodograms shown in this paper, λ was chosen to be of the form f(j/T ) where
j = 0, 1, . . . , T/2 and f is the sampling frequency of the data — 10 surveys per year. This scaling
means that the periodograms are displayed for frequencies between 0 and 5 [meaning that the
fastest cycle observable from these data would be 5 cycles per year=one cycle every 2 months].
For data with a sampling frequency of 1 (say, for annual observations) the periodograms would
be shown for frequencies between 0 and .5 [meaning that the fastest cycle observable would be .5
cycles per year=a two year cycle].

It can be shown that the estimates of I(λ) do not become less variable as the length of the series
increases . To reduce this variability, most analysts work with a smoothed periodogram. In this
paper, I averaged over the 3 nearest neighbors twice over.11

It can also be shown that if Y (t) is a normal time-series, then the A and B coefficients will be
jointly normal and that D(λ) will have a normal distribution as well.12 Based on these results, as
n → ∞, I(λ) will be distributed χ2

2. The smoothed periodogram will also have a χ2 distribution
but will have degrees of freedom proportional to the number of nearest neighbors.(Shumway and
Stoffer, 2000, pages 235-242)

A.2 Squared Coherency and Phase

[insert stuff from text here! with better explanation especially about how to interpret the relation-
ship between coherency and phase!]

There is a lot more to learn about frequency domain time-series analysis. If you want to know
more, see the references.

B Notes on the Analysis

• In 1991, only 9 polls were done. In order to make the sampling frequency the same for all
years, I created an observation for this survey, linearly interpolating the adjacent observations.

11This is known as a “modified Daniel” smoother which basically smooths over the 3 nearest neighbors twice in
this paper.

12I inspected qq-plots for the detrended, demeaned series used in this paper. The sample quantiles map very closely
onto the theoretical quantiles for a normal distribution.



• Smoothing of series was done nearest neighbor bandwidths of around .5 (i.e. roughly 50% of
the data), using a local likelihood approach implemented by Loader (1999) in the S procedure
locfit13.

• Final calculation and presentation of the periodograms were done using the S function
spec.pgram with 10% tapers and smoothing over the 3 nearest neighboring points using a
Daniell smoother [i.e. a moving average that gives half weight to the points at the end of the
smoothing window]

• The block resampling was done by me. The code for this and other aspects of the analysis of
this paper will be available at http://socrates.berkeley.edu/~jbowers.

C Notes on the Data

The Pew Charitable Trusts and the National Science Foundation provided funds to allow Henry
Brady, Robert Putnam and Andrea Campbell to buy the series of 207 surveys from Roper, and for
them, plus Dorie Apollonio, Laurel Elms, and Steven Yonish to assemble the studies into a single
file of 410,116 respondents.

Each survey aimed to be a representative sample of the population of the Continental United
States, age 18 and up — excluding people in prisons, Army camps, nursing homes, etc... The
sample proceeded by stages: In the first stage, 100 counties were selected at random within strata
determined by population size within geographic region. In the second stage, cities and towns were
drawn at random within counties, proportionate to population. Third, blocks (or rural routes)
were drawn at random proportionate to population within urban areas or at random in rural areas.
The method for selecting household within block is not as clear, the literature states: “A specified
method of proceeding from the starting household was prescribed at the block level.”

The sampling design included quotas for men and women over and under age 45, and quotas for
employed people. Also, interviewing on half of the assigned blocks had to be conducted after 5pm
on weekdays or else on Saturday or Sunday.
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