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Somewhere along the line in the teaching of statistics in the social
sciences, the importance of good judgment got lost amid the
minutiae of null hypothesis testing. It is all right, indeed
essential, to argue flexibly and in detail for a particular case when
you use statistics. Data analysis should not be pointlessly formal.
It should make an interesting claim; it should tell a story that an
informed audience will care about, and it should do so by
intelligent interpretation of appropriate evidence from empirical
measurements or observations.

(Abelson, 1995, page 2)

With neither prior mathematical theory nor intensive prior
investigation of the data, throwing half a dozen or more
exogenous variables into a regression, probit, or novel
maximum-likelihood estimator is pointless. No one knows how
they are interrelated, and the high-dimensional parameter space
will generate a shimmering pseudo-fit like a bright coat of paint
on a boat’s rotting hull.

(Achen, 1999, page 26)

Abstract

Nearly all hierarchical linear models presented to political science audiences are
estimated using maximum likelihood under a repeated sampling interpretation of the
results of hypothesis tests. Maximum likelihood estimators have excellent asymptotic
properties but less than ideal small sample properties. Multilevel models common in
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political science have relatively large samples of units like individuals nested within
relatively small samples of units like countries. Often these level-2 samples will be
so small as to make inference about level-2 effects uninterpretable in the likelihood
framework from which they were estimated. When analysts do not have enough data
to make a compelling argument for repeated sampling based probabilistic inference, we
show how visualization can be a useful way of allowing scientific progress to continue
despite lack of fit between research design and asymptotic properties of maximum
likelihood estimators.

Nearly all hierarchical linear models presented to political science audiences are estimated

using maximum likelihood under a repeated sampling interpretation of the results of hy-

pothesis tests.1 We all know that maximum likelihood estimators have excellent asymptotic

properties but less than ideal small sample properties. Multilevel models tend to have at

least two different sample sizes. If an analyst has 10 countries with 1000 people inside of each

country, which sample offers the most guidance for assessing the appropriateness of standard

maximum likelihood estimation of a multilevel model? If she is interested in the effects of

country level variables either alone or in interaction with individual level variables, the rel-

evant sample size is 10. Estimates from a multilevel model with 10 degrees of freedom for

country level variables may not be consistent and will not have known sampling distributions

— and thus hypothesis tests in this case will be uninterpretable in the likelihood framework,

even if those 10 countries were a random sample from the population of countries. While

most analysts would realize that the asymptotic properties of a maximum likelihood estima-

tor do not kick in at N = 10, many are understandably confused about a situation where

nj = 1000 and J = 10 — that is, where there is plenty of information for likelihood inference

within countries, but there is not enough for such inference across countries. This can be

especially confusing if the dataset at hand has 10,000 columns (i.e. N = nj × J = 10, 000).

Our anecdotal evidence suggests that this situation, where the number of “containers” (like

countries) is too small to support either powerful or credible hypothesis tests, is common in

1When we say “hierarchical linear model” we mean a multilevel, mixed effects, random coefficients, or
even random effects model. We will use the terms “multilevel model” and “hierarchical linear model” inter-
changeably throughout this article.
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political science. For example, in a quick online survey of articles published in major political

science journals2 from 2000 to 2005, we found 14 articles that used multilevel models. Of

those half had level-2 sample sizes smaller than 28.

Does this mean that such a research design with only 20 countries is useless? We say

no. In this paper we argue that visualization of multilevel data can help analysts with

small samples of level-2 units (like countries or states) learn about their data and present

results that are not dependent on asymptotic or distributional assumptions. Although small

samples mean that analysts have low power and/or uninterpretable hypothesis tests within

the likelihood framework, small samples also have the benefit of being relatively easy to

visualize. At small sample sizes audiences will prefer eleborate and focused description to

simplification and summarization and so visualization appears particularly well suited to

help analysts make the most of what data they have.

In other work we have emphasized the importance of designing multilevel studies such

that the number of level-2 units is large (Stoker and Bowers, 2002b,a), so we will not address

research design directly here.3 Snijders and Bosker (1999) present a nice heuristic for deciding

how to design a multilevel study when they say:

A relevant general remark is that the sample size at the highest level is usually
the most restrictive element in the design. For example, a two-level design with
10 groups, i.e. a macro-level sample size of 10, is at least as uncomfortable as a
single-level design with a sample size of 10. Requirements on the sample size at
the highest level, for a hierarchical linear model with q explanatory variables at
this level, are at least as stringent as requirements on the sample size in a single
level design with q explanatory variables.(page 140)

2Comparative Politics, British Journal of Political Science, International Organization, Comparative Po-

litical Studies, Journal of Conflict Resolution, American Political Science Review, American Journal of

Political Science, and Journal of Politics
3Other authors from a variety of disciplines have continued to emphasize the importance of large level-2

sample sizes. See for example the following recent papers and the citations therein: In a series of papers Hox
and Mass present some simulations suggesting confidence intervals for level-2 coefficients are about 9% too
small when J = 30 for a very simple model with one level-1 independent variable, one level-2 independent
variable, and a cross-level interaction. They advise at least 50 groups in order to have correct coverage of
confidence intervals on all pieces of the multilevel model (the fixed coefficients and the variance components)
(Maas and Hox, 2002; Hox and Maas, 2002; Maas and Hox, 2004). Kreft (1996) reviews simulation studies
and suggests a ’30/30’ rule (at least 30 level-2 units and at least 30 level-1 units within each of them).
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That is, if you wouldn’t trust a single level maximum likelihood model with a given number

of units, then you shouldn’t trust your multilevel model to estimate level-2 effects with that

number of units either.

In addition, the common interpretation of likelihood inference requires that the level-2

units be a representative sample of some well-defined population. Political scientists do not

tend to have such nice samples of common level-2 units like countries or other governmental

entities. Much more often the level-2 units are the countries that have enough data to analyze;

that is, they are a convenient sample, not a random one. Thus, even if one had enough

countries to rely on the large sample properties of likelihood inference, one might be hard

pressed to interpret p-values as generated from repeated sampling from some population.4

The point of this article, however, is not to harangue scholars about the dangers of small

sample sizes and the unrepresentativeness of their samples or to stop the flow of research

using multilevel models. Rather, it is to present a few techniques that can help scholars

keep working, but to keep working with more confidence than is currently possible using

multilevel models inappropriately. We call our recommendations “EDA” for Exploratory

Data Analysis because they rely on graphical presentations of the data rather than formal

hypothesis testing. In this way, we shift the focus from inference about repeated samples of a

well-defined population to compelling description of the patterns within a given dataset. This

means that analysts can get about their work of learning about the world while presenting

results that are not based on assumptions about asymptopia that they know from the outset

4We focus on what Rubin (1991) calls“repeated-sampling model-based inference”or what we call“repeated
sampling” or “likelihood-based inference” in this article because the majority of uses of multilevel models (or
statistical models in general) in political science occur within this framework. One other common method
for dealing with the problems posed by small, unrepresentative, samples in multilevel models is to switch
the meaning of “probability” from a repeated sampling, frequentist understanding to a Bayesian perspective.
For example, although most of Raudenbush and Bryk (2002) deals with maximum likelihood approaches to
hierarchical linear models, their Chapter 13 presents a Bayesian example for a case with 19 level-2 units.
The move to switch inferential frameworks can make the results of data analysis more meaningful and easier
to interpret. However, as the number of level-2 units decreases, the influence of the choice of a particular
prior (in this case, tending to be multivariate normal) and hyperpriors (independent uniform distributions),
is larger. That is, less observed data makes the resulting posterior more sensitive to the priors — and
thus makes sensitivity analysis for choice of prior that much more important. For a nice example of such a
sensitivity analysis see Jackman (2004).
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are false in their dataset. We think that the techniques we present here allow analysts to tell

compelling stories and to assess the implications of theories while remaining honest about

what kinds of inference a given research design will bear. We do not suggest these techniques

as a substitute for multilevel models when analysts do have large, random, samples of level-2

units from well-defined populations. But, we have realized that despite the common advice

urging new research designs to collect as many level-2 units as possible that we cited above,

there is little advice about what to do when the constraints of the research design are less

than ideal. In other words, what should the analyst do if she desires to make inferences about

level-2 effects (or cross-level interactions) but the number of level-2 units is small and even

perhaps the level-2 units are not a representative sample from some well-defined population?

To answer this question we present some ideas that we have gleaned from a number of places

about how to continue to work even when large sample likelihood based inferences fail.

Our suggestions here are meant to help analysts deal with violations of the sample size

assumptions necessary to support their inference. There are of course many other assump-

tions which undergird any given data summarization effort including assumptions about

probability distributions (i.e. is it reasonable to assume a normally distributed dependent

variable and normally distributed coefficients), about the structural relationships (i.e. is a

straight line a reasonable summary), and about omitted variables (i.e. is the association

causal or not). In this paper, we are mainly going to talk about the asymptotic and struc-

tural assumptions. Causal assumptions are best checked with sensitivity analysis (See, for

example Rosenbaum, 2002, Chapter 4) and distributional assumptions are best checked with

diagnostics. The best way to assess the probability model is to first estimate a multilevel

model and then follow the advice given in Pinheiro and Bates (2000, Chap 4), Gelman (2004,

2003) and Gelman et al. (2004, Chap 6).

We will first present the “standard” multilevel model, since it is this model that most

analysts desire to use. Then we present a few plots which address the model — in effect,

answering the questions posed by the standard multilevel model using visualization rather
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than probabilistic inference.5 Finally, we suggest some general guidelines for when visualiza-

tion may be most useful, and when the simplification of modeling and probabilistic inference

comes into its own.

The “Standard” Multilevel Model

When most people say “multilevel model” or “hierarchical linear model” they nearly always

refer to a particular setup — a linear, additive, structural model, a normal probability model

for the dependent variable and the error, and a multivariate normal probability model for

at least some of the coefficients in β. Here, we explain this archetypal model so that we can

know what kinds of graphical techniques might enable an analyst to approximate multilevel

inference in the case where there are too few level-2 units to support the usual maximum

likelihood assumptions.6

Like any statistical model, a multilevel model involves two main components: (1) a

structural model that specifies the functional form of the relationship among the variables,

and (2) a stochastic model that uses probability distributions to encode information about

how the values of the variables were produced in the world.7 In the majority of uses of

multilevel models, the structural model is linear and involves interaction terms, such that

for a simple model with two levels, one level-1 explanatory variable, X, and one level-2

explanatory variable, Z,

5We highly recommend Cleveland (1993) for intelligent discussion for how probabilistic inference and
visualization can interact and complement each other.

6This standard model is the one that is hard coded into the lme() command in R and Splus (Pinheiro and
Bates, 2000), into the HLM program (Raudenbush and Bryk, 2002), and into most other common multilevel
modeling routines. Other common programs for estimating this standard model include gllamm for Stata
http://www.gllamm.org and proc mixed for SAS

7Some people talk about the probability model as representing beliefs about the way that the observations
depart from the structural model — that is that the probability model refers to the distribution of e. Since
e = y − Xb and y = XB + e it is equally easy to talk about the probability model as referring to the way
that the values for y were produced. In the multilevel model literature it is more common to talk about
assumptions for the distribution of y and we will follow this practice here. In the end, any probability model
about y can be re-expressed as a probability model about e, and vice-versa.
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Yij =β0j + β1jXij + εij (1)

β0j = γ00 + γ01Z1j + ν0j (2)

β1j = γ10 + γ11Z1j + ν1j (3)

where j = 1 . . . J for the number of level-2 units and i = 1 . . . nj for the number of

level-1 units within a given level-2 unit. Here, β0j and β1j are assumed to vary as if they

were drawn from a multivariate normal probability distribution whose location (mean) is

determined by the functions of Z1 shown in (2) and (3). The variance-covariance matrix

of this multivariate normal is usually written with entries denoted by τ such that Σβ =






τ 2

11
= Var(β0j)

τ21 = Cov(β0j , β1j) τ 2

22
= Var(β1j)






.

Combining the previous three equations, we have:

Yij =γ00 + γ01Z1j + ν0j + (Xij)(γ10 + γ11Z1j + ν1j) + εij (4)

=γ00 + γ01Z1j + γ10Xij + γ11Z1jXij + (ν0j + ν1jXij + εij), (5)

Equation 5 requires that, for a given value of Z, a change of 1 unit in X has the same

effect on Y whether the move is from 0 to 1, or from 99 to 100. This structural model also

requires that the slope of the line representing the X, Y relationship varies at a constant rate

across the range of Z.

One can also write this standard model combining the structural decisions with the

stochastic ones using bold letters to denote matrices such that:
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y|X, β,ΣY ∼ N (Xβ,ΣY ) (6)

β|Z, γ,Σβ ∼ N (Zγ,Σβ) (7)

Nearly all analysts decide that the values of Y ought to be seen as arising from a process

governed by the Normal Distribution. The extra variation in the intercept and slope pa-

rameters β0j and β1j is also nearly always understood as arising from a multivariate Normal

distribution.8 Nearly always, the variance matrix of Y , ΣY , is assumed to contain σ2 for the

variance of Yij, ρσ2 for the covariance of Y s within the same level-2 unit, and 0 otherwise.

The major benefit of this model is that it allows the analyst to specify directly the

structure of her dataset in her statistical model, and to estimate relationships taking this

into account.9 Equations 6 and 7 together allow us to write the analogue to (5) — showing

how both X and Z combine to produce values of Y given the distributional assumptions

such that

y|X, β,ΣY , γ,Z,Σβ ∼N
(

XZγ,ΣY + XΣβX
T
)

(8)

β|y,Z, γ,Σβ ,Σγ ,ΣY ∼ N

(

(XTΣ−1

Y X + Σ−1

β )−1(XTΣ−1

Y y + Σ−1

β Zγ),

(XTΣ−1

Y X + Σ−1

β )−1

)

(9)

Equation 9 shows that the coefficients in β are an average of the within-unit regressions

weighted by the variation within those regressions (See, Chapter 10 of Gill, 2002, for more

explanation of this model in the Bayesian context). Thus, an important benefit of these

8In the Bayesian context, the parameters in γ are often given their own probability distributions (called
“hyper-priors”) which themselves are governed by parameters fixed by the data analyst. See Chapter 15 of
Gelman et al. (2004) for more on the Bayesian perspective on these kinds of models.

9For much more discussion of the benefits, weaknesses, details, and implementation of multilevel models
see: (Steenbergen and Jones, 2002; Snijders and Bosker, 1999; Kreft and Leeuw, 1998; Longford, 1993;
Goldstein, 1999; Pinheiro and Bates, 2000; Raudenbush and Bryk, 2002; Singer and Willett, 2003; McCulloch
and Searle, 2001).
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models occurs when an analyst has many level-2 units with so little information in each unit

such that it is impossible to estimate coefficients with reasonable standard errors without

pooling. This benefit is only possible, however, if the analyst is prepared to commit to

pooling the data in this particular way, with these particular assumptions — which require

many level-2 units.

In general, there are four ways to estimate the coefficients in (5) or (8) and (9). The first

way is to ignore the multilevel structure of the data, and to estimate this model using OLS —

using the same structural model and same probability model for Y but no probability model

for the coefficients, which are assumed fixed. The approach ignores the fact that the error is

not εij but (ν0j + ν1jXij + εij), which produces heteroskedasticity and serial correlation.

More importantly, it is not reasonable to assume that the units inside of one level-2 unit

are exchangeable with the units in another level-2 unit. Roughly, the fact that the level-1

units are not exchangeable means that it does not make sense to treat them all as if they

arose from a common probability distribution. This means that one cannot write down a

likelihood function as a simple product of identical distributions, and it also implies that the

responses yij cannot be seen as arising independently of the level-2 unit within which they

are nested. The very fact that an analyst wants to estimate coefficients for Z suggests that

he does not believe the level-1 units are exchangeable. Exchangeability is a weaker property

than independent identically distributed (iid), but it is a precondition for using probability

distributions to pool information from disparate observations.10 If the level-1 units are not

plausibly exchangeable then they are not independent, the degrees of freedom available for

hypothesis testing will be too large, and the hypothesis tests on the coefficients will be

too liberal. One strategy that can help analysts out of these many problems is to include

dummy variables for each level-2 unit in their equation, thereby only estimating coefficients

conditional on each unit as required by the assumption of exchangeability; this dramatically

10See Gill (2002, Chapter 10) and (Gelman et al., 2004, Chapter 5) for accessible discussions of exchange-
ability in Bayesian data analysis. Regardless of the mode of inference, exchangeability is an important
prerequisite for any use of a likelihood function.
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increases the number of coefficients estimated. Fixed effects allow for the intercept to be

different for each level-2 unit, but for the slopes to be constant across units.11

The second approach is to collapse the data such that the mean of y within each level-2

unit (ȳ.j) is regressed on the mean of x within each level-2 unit (x̄.j) and z. This approach

implies that the analyst believes that the level-1 units are identical within level-2 units, and

thus the mean provides as much information about y and x as the individual observations do.

If this decision is not correct, then the analyst has needlessly thrown away a lot of information

— and, more importantly, no longer has a model of an individual level process. In the end,

analysts must worry that the results of such a model reflect the process of aggregation more

than, or instead of, an individual level process (Achen and Shively, 1995).

The third approach is to estimate the set of β0j and β1j separately for each level-2 unit.

Each within-unit regression may satisfy the exchangeability (and iid) assumptions required

for such models. This approach has the benefit of allowing the analyst to inspect the set of

regression coefficients for heterogeneity, but it is not often a reasonable strategy for estimating

the parameters in (5). The approach implies that the analyst believes that the level-2 units

have nothing in common, and it tends to produce a lot of possibly noisy regression estimates

that are hard to combine in a principled way.

The multilevel model approach attempts to combine the benefits of the second two ap-

proaches. By specifying a probability distribution for the coefficients (i.e. assuming that

the coefficients themselves are exchangeable) the analyst can overcome the problem of the

non-exchangeability of y: yij|βj can be exchangeable and conditionally independent even

if yij is not, as long as βj is exchangeable. In addition, if it makes sense to assume that

the coefficients are drawn from a common multivariate distribution, then sparse information

inside of one level-2 unit can be compensated for by information from the pooled sample

overall.

From the standpoint of scientific inference, the within-unit regression (or the fixed effects

11See Wooldridge (2002, Chapter 10), Davidson and MacKinnon (1993, Chapter 9.10), and Mundlak (1978)
for more on fixed effects models.
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regressions) produces results that only allow the analyst to generalize to those particular

units, while the multilevel model — by thinking about the level-2 units as a sample from

a population or as having values produced by a general stochastic process — allows for

generalization to other level-2 units subject to that same process if the assumptions are

correct. But, in order to get the multilevel model off the ground, we must have enough

level-2 units to make our probabilistic inferences feasible before we can be comfortable with

generalization.

Assumptions and Consequences

So far, we have asserted that a small sample size causes problems for inferences based on

multilevel models. But what exactly are the consequences? As we have discussed, the

standard multilevel model relies for inference on the idea that the sample at hand is nearly

infinite and that it was randomly selected from a well-defined population. That is, any

problem faced by any other use of maximum likelihood for probabilistic inference is faced

by the multilevel model. In the cases of multilevel model usage that are most common in

political science, the second assumption, that the sample on hand is somehow representative

of some population, is nearly always violated. However, violating this assumption alone is

not enough to cause problems with the actual data analysis, just with the interpretation

of the p-values that form the basis of standard likelihood inference. That is, having a

large unrepresentative sample of an ill-defined population merely makes it hard to believe

the standard frequentist interpretation of the p-values, not hard to believe that they arose

from a sampling distribution whose asymptotic foundation is firm. The first assumption,

though, is absolutely key to both estimation and interpretation of the model. Violation of the

assumption that the sample at hand is nearly infinite negates the nice asymptotic properties

of maximum likelihood estimates (MLEs) and places serious doubt on any hypothesis tests

or confidence intervals.

If the sample size approaches infinity then the ML estimator’s consistency properties tell

us that our estimates will be “close” to the true value of the parameter in the population.
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Since the log-likelihood function is defined to be a sum of a series of independent random

variables, the large sample allows a central limit theorem to give the analyst confidence that

the sampling distribution of our estimate is approximately normal. We can use our knowledge

of this fact to do hypothesis tests and construct confidence intervals. These properties are

true regardless of the actual or the assumed distribution of our disturbances and are based

merely on the central limit theorem (King, 1989).

If the sample size is small, then, in addition to the iid assumptions (within level-2 unit),

the credibility of the distributional assumptions that are required for construction of the

likelihood function become more important in justifying the standard likelihood hypothesis

testing machinery. If the analyst is correct in assuming a normal distribution for y and

a multivariate normal distribution for β, then because these two assumptions produce one

multivariate normal distribution that is a member of the exponential family, the ML esti-

mators will have good small sample properties, as they are functions of sufficient statistics.

It is well known that when sampling from a normal distribution the ML estimator of σ2 is

biased downward in small samples even though it is consistent.12

However, if the sample size is small and the distributional assumptions are incorrect, then

all bets are off. We depend on asymptotic normality to derive the distributions of hypothesis

tests such as the likelihood ratio or the Wald test. If we cannot assume asymptotic normality,

we cannot be sure what distribution these tests follow and therefore what the p-values from

them mean (King, 1989). Without a large sample size, our ML estimates are potentially

biased and our hypothesis tests lack power at best and are based on incorrect and unknown

sampling distributions at worst. The large sample sizes of ML allow the analyst some wiggle

room in specifying her likelihood function — a model of poisson data based on a Normal

assumption might produce coefficients that are hard to interpret (i.e., we might think they

represent a parameterization of µ in the normal pdf, but which ought to represent the λ in the

Poisson pdf), but a large enough sample will ensure that the formulas for our hypothesis tests

12See Greene (2002) for more discussion about the small sample properties of single level maximum likeli-
hood estimators.
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and confidence intervals, which are based on asymptotically normal sampling distributions

of estimates, are correct. Clearly applying the standard multilevel model to data with very

few level-2 units in the hope of estimating and testing level-2 coefficients is incorrect.

Once a researcher decides that a multilevel model is an appropriate conceptual model for

her data, she faces a number of decisions.

First are decisions about exactly how the variables relate to each other. Do straight lines

do a good job of summarizing the relationship between X, Z, and Y ?

Second are decisions about the ways in which the values of the variables were produced.

Is the Normal distribution useful for thinking about pr(Y |X, Z, β, γ)? Is it useful for thinking

about pr(β|Z, γ)? Are these assumptions reasonable? Even if the slopes and intercepts “look

like” they could have been generated by such a process, is it desirable to summarize them in

this way? Is it useful to think of the values of β as all emerging from one single distribution?

(That is, if the values in y are only exchangeable conditional on β, are the values of β

exchangeable? Or must yet more conditioning be specified?)

Finally, even if these above questions have been answered adequately such that the analyst

believes equation 5 (or equations 8 and (9)), she must ask whether she has enough data for

credible and powerful hypothesis tests and consistent parameter estimates.

In what follows we present some very basic descriptive techniques to help justify decisions

about exchangeability and linear, additive structure. We also attempt to use visualization to

answer some of the questions posed by the multilevel model while using a small, non-random

sample of level-2 units. As we noted earlier, assumptions about an appropriate probability

model are best checked with diagnostics after running a multilevel model — and thus are

more or less irrelevant to people who have too few units for confident estimation of this

model. In the end, most of what is important to political scientists occurs in the structural

model, and this is what receives the focus in the following pages.

Cleveland (1993) notes that visualization is a method for learning from data that is

different from probabilistic inference.
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[Visualization] stresses a penetrating look at the structure of data. What is
learned from the look is guided by knowledge of the subject under study. Some-
times visualization can fully replace the need for probabilistic inference. We
visualize the data effectively and suddenly, there is what Joseph Berkson called
interocular traumatic impact : a conclusion that hits us between the eyes.(page
12, emphasis in original).

When analysts do not have enough data to make a compelling argument for repeated sam-

pling based probabilistic inference, visualization can be a useful way of allowing scientific

progress to continue despite lack of fit between research design and asymptotic properties of

maximum likelihood estimators.

An Application: Education and Political Participation

One of the most persistent and important findings in the political participation literature

to date is that individuals who have more formal education are more likely to get involved

in politics than those who have less. Discovering that education is a strong predictor of

political participation has raised the question about what it is, exactly, that education does

to facilitate political participation. The most recent answers to this question provide two

mechanisms: education influences political participation via provision of “civic skills” and

“civic status”. These theoretical mechanisms have received empirical support from findings

that individuals who have money, time, or organizational abilities — that is, people who

have the “civic skills” to participate in politics — are those more likely to do so. And,

individuals who know a lot of other people, particularly politically active people — that is,

people who have “civic status” — are also more likely to participate in politics than those

who have less extensive and politically involved social networks.13 Rosenstone and Hansen

(1993) summarize the distinction between the operation of skills and status succinctly:

. . .When political participation requires that knowledge and cognitive skills be
brought to bear, people with more education are more likely to participate than

13The most recent and extensive articulation and defense of the “civic skills” and “civic status” points of
view are provided by Verba, Schlozman and Brady (1995) and Nie, Junn and Barry (1996). Verba, Schlozman
and Brady (1995) coined the term “civic skills.” I use the term “civic status” to describe the findings and
argument of Nie, Junn and Barry (1996). Huckfeldt (1979) presents an in-depth analysis of how status within
social networks can influence political participation.
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people with less education. Participation, that is, requires resources that are
appropriate to the task.

On the other hand, education also indicates both the likelihood that people will be
contacted by political leaders and the likelihood that they will respond. Educated
people travel in social circles that make them targets of both direct and indirect
mobilization. Politicians and interest groups try to activate people they know
personally and professionally. (Rosenstone and Hansen, 1993, page 76)

Our question is whether there are places where the relationship between education and

political participation changes depending on the social context — and in particular on the

educational context. In places where few people have college degrees (like West Virginia,

where only 15% of the population aged 25 to 65 has a college degree), those who do have BAs

ought to find that their educational status places them into more politically relevant social

network positions — and thus they ought to be more advantaged by their education than peo-

ple who are just one college educated person among many (like those living in Massachusetts,

with 33% of the population college educated).14 If education most strongly predicts political

involvement in places with few highly educated people — like West Virginia — and only

weakly does so in places with many highly educated people — like Massachusetts— then we

might think that education is mainly acting to allocate politically relevant status to people.

If an additional year of education provides the same boost to participation in all places,

regardless of the educational inequality in the context, then we might think that education

is mainly providing individuals with the skills necessary to overcome the costs of political

participation. Of course, the first pattern of results might also suggest that education is

providing skills that are politically relevant in only some places — that somehow political

involvement in West Virginia is qualitatively different in terms of skills or status required

than in Massachusetts. And, the second pattern might also indicate that politically relevant

social status is structured in the same way in all of the places that we examine. However, ei-

ther set of findings would contribute to the existing literature and, more importantly, suggest

14This is the argument of Nie, Junn and Barry (1996), only they are more concerned about changes in the
national educational context over time, rather than differences among places in educational context in one
moment in time.
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new avenues for research into how institutions and behavior interact to produce politics.

In order to make our analysis slightly more realistic, we decided to worry about two

potentially confounding variables. At the individual level, we decided to try to distinguish

the effect of another year of education on political participation from the effect of gender

(since we know that women tend to report less participation than men and also, among

the older 2/3 of the population, tend to have less education than men (Burns, Schlozman

and Verba, 2001)). We also worried that the effect of state level educational context on the

individual level relationship might be masking the effect of competitive races occurring in that

state. That is, in addition to our primary trivariate causal relationship (where the effect of

an individual’s education on their political participation may vary by the educational context

in which they live), we also allow for the presence of a potential confounding covariate at

level-1 (the person’s gender) and a covariate at level-2 (the competitiveness of the senatorial

race(s) in that state in that year). The reasoning for the level-2 covariate is that we want to

distinguish between the effect of enduring features of the economic and social structure of

the state (like the distribution of college education across the population) and the temporary

features of a given election.

We represent educational context with data from the 2000 Census on the percentage of

the population in a state that has completed a college degree. The competitiveness of the

2000 election at the state level is represented with the difference in vote percentages received

by the two major party candidates for the Senate. This variable runs from 0 (meaning that

the two major party candidates had virtually the same percentage of the two party vote) to

100 (meaning that there was either no election or no two party contest such that the winner

received all of the two party vote).15 Data on gender, individual years of education and

political participation are from the 2000 National Election Study (NES). We selected the 20

states from the NES which had the largest samples of survey respondents within them. This

left us with 20 states containing between 31 and 135 respondents each with a total of 1247

15The largest two-party margin by which a contested senate election was won in 2000 was 60 percentage
points.
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respondents with valid responses about their education, political participation, and gender.

Thus we have a small, non-random sample of states, each with what we are pretending is

a random sample of individuals inside.16 In this way we have a dataset that is similar to

those common in political science, but with perhaps fewer level-1 units per state. The size

of the sample of states (J = 20) is too small for large sample properties like consistency to

provide credible bases for direct application of the multilevel model via MLE. If we had only

2 states, of course, we might not even need to use visualization, but 20 is enough to make it

useful to summarize the within-state relationships somehow.

The analyses that follow are not meant to be an authoritative investigation of how social

context changes the influence of education on political participation. However, they are

an example of how one might do some of the intensive investigation of data that we think

ought to precede all applications of multilevel models. We proceed here as if we believed

the standard two-level probability model written in equations (6) and (7). We represent

the ideas about education and political participation as they usually are, with the following

structural model:

Participationij =β0j + β1jEducationij + β2jSexij + εij (10)

β0j = γ01 + γ02% College Educatedj + γ03Competitivenessj + ν0j (11)

β1j = γ10 + γ11% College Educatedj + ν1j (12)

β2j = γ20 + ν2j (13)

Notice that (13) allows the effect of Sex on Political Participation to vary across states,

but does not specify exactly what state level variable governs this variation. The effect of

education on participation, however, is assumed to vary as a function of the educational

16We are aware of several additional complications and modifications that might be made to this model
due to the clustering within states that arises from the general sampling design of the NES (Stoker and
Bowers, 2002b,a) and specifics of the 2000 NES (Bowers and Ensley, 2003). We set these concerns aside for
this paper since here the data play an illustrative role in the service of our discussion of methods.

17



context of the state. Equations 10 to 13 can be combined into one equation analogous to

(5).

Participationij =γ00 + γ01% College Educatedj + γ02Competitivenessj

+ γ10Educationij + γ20Sexij

+ γ11% College Educatedj · Educationij

+ (ν0j + ν1jEducationij + ν2j + εij)

(14)

The NES provided 11 questions about the non-voting political involvement of respon-

dents.17 We summed the “yes” responses to these questions to create a variable containing

the total number of acts that a respondent reported doing in the past year — only 50% of

the sample reported more than 1 act. The NES respondents also reported their educational

status, which produced a variable ranging from 0 years of formal education to 17 or more

years — 50% reported more than 14 years of education. Since only 39 people out of 1794

with valid education answers reported less than 8 years of education, we collapsed their an-

swers to 8 years. In the analyses to follow we “centered” this variable such that 0=12 years

of education, -4=8 or fewer years of education, and 5=16 or more years of education. The

reason we did this is to ensure that the intercept (β0j) has a meaningful interpretation (i.e.

the average number of acts of political participation among men with a high school degree).

As we shall see, certain states did not contain people with lower than a high school degree,

so setting the zero-point of the dependent variable to 12 years of education enables the in-

tercepts of the within-state regressions to avoid displaying artifically high variance merely

by virtue of an intercept outside the range of the data.

17The types of participation summed here are: Did R try to influence vote of others, Did R display
button/sticker/sign, Did R go to meetings/rallies etc., Did R do any other campaign work, Did R contribute
to candidate, Did R give money to party, Did R give to group for/against candidate, Worked on community
issue in last year, Contacted public official to express in last year, Attend community meeting about issue
in last year, Taken part in Protest or march in last year.
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Batches of Lines as Data

The model as we wrote it in equation 14 specifies that the individual level relationship

between education and political participation ought to vary smoothly as a function of the

percent of the state’s population who have a college degree, holding constant the effects of

gender and the competitiveness of the senate election. That is, the entity that we want

to know about is the slope of the individual level regression line. Since these slopes (and

intercepts) are the object of our substantive question, these are the objects that we would

like to learn about — and thus they are the objects we ought to visualize.

To this end we estimated a separate regression of participation on education and gender

for each of the 20 states (in essence estimating the model shown in (10)).18

We collected the coefficients from the within state regressions into a new dataset with one

row per state, and added the state-level variables. As noted above with the two probability

models, β depends on some second-level variables, Z, with some effect, γ. This new data we

created has our β̂, which we can think of as our dependent variable in the second level, as

well as our Z (percent college educated in a given state and senate competitiveness), which

we can think of as our independent variables at the second level.

If there is no appreciable variation in the slopes and intercepts across states, then it is

possible that our model is incorrect in specifying that the individual level relationships ought

to be modeled as regressions, the slopes and intercepts of which are distributed according to

a multivariate normal. That is, the first question we have is whether there is any appreciable

variation in the within state regression coefficients that is worth attempting to explain with

a state level variable. Pinheiro and Bates (2000) have developed a plot for just this purpose.

For each state, they suggest plotting the point estimate with confidence intervals as line

segments on either side. We present such a figure with 95% confidence intervals in figure 1.

Even though we estimated a different effect for gender in each state such that these slopes on

education represent the effect of individual education on individual participation controlling

18This approach is the same as that suggested by Gelman for TSCS data, the “secret weapon” (See
http://www.stat.columbia.edu/~cook/movabletype/archives/2005/03/the_secret_weap.html).
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for gender, we do not display the coefficients for sex here since we have assumed that it

has the same effect across all states and since it is not the primary focus of our attention.

The left panel displays the intercepts, which are to be interpreted as the average number of

acts of non-voting political participation reported by men in those states since “male” is the

excluded gender category. The right panel displays the slopes, which show the difference in

average number of acts of political participation between people who have 1 year of education

difference.
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Figure 1: The Between-State Variation of Within-State Regressions. The
within-state regression estimates and 95% confidence intervals for the intercept and slope of
education from equation 10 are plotted in order of state level education (percent of the state
population aged 25-64 who have at least a college degree).

If all of these horizontal lines stacked up right on top of one another, then we might

imagine that education has the same effect on participation in every state — and thus, that

the “education as social network status” mechanism may not be operating strongly (or that

the relevant social networks are not as large or small as a state such that we have the wrong
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type of level-2 unit for this test). In fact, there is appreciable variability here (at least, we

think that most reasonable scholars would think so). The differing widths of the confidence

intervals merely suggest the differences in within-state sample size.

We plotted these lines in the order of state-level educational context, from the lowest at

the bottom of the plot (Arkansas with 16.7% of the population aged 25-65 having at least

a college degree) to the highest at the top of the plot (Massachusetts with 33.2% of the

population having at least a college degree). If an individual’s own education becomes more

important in places where fewer people are well educated, then the lines in the “slope” panel

of this plot should display a pattern where the bottom lines are in the right side of the plot

(i.e. larger slopes) and the top lines are in the left side of the plot (i.e. smaller slopes).

Such an overall pattern does not jump out of this plot. Notice that this plot did not take

the competitiveness of the state senate elections into account. However, it does suggest that

while the individual level relationship is not strictly constant across states, it does not vary

extremely systematically by state level education.

The plot in figure 1 does a good job of allowing us to compare the entities of theoretical

interest (the within-state slopes and intercepts) to one another by simplifying them and pre-

senting them side-by-side ordered by values of the state-level variable of interest. However,

this plot does not allow us to assess the within-state fits. We already mentioned a concern

with non-constant residuals correlated with individual education; however, our model speci-

fies OLS fits within states — and OLS is notoriously sensitive to being influenced by single

points.19 We would like to plot the within-state fits side-by-side, again in order of our key

second level variable, to allow for assessment of how reasonable our decision to use OLS

within states is. By ordering the plots using the state level education we see how the within-

state slopes vary as the state level education changes — the previous plot was better for

detecting this kind of pattern, and this next plot is better for assessing the within-state fits,

19See Langford and Lewis (1998) for a good discussion of how to detect influential outliers after running
the full multilevel model. For a general discussion of the problem of influential points in OLS see Fox (1997,
Chapter 11).
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but it still makes sense to keep the model in front of us as the baseline and motivation of our

visualization. After all, our visualization is supposed to help us learn about the relationship

between this model and our data.

Figure 2 shows the within state regressions from (10) with solid lines, outlier resistant

within-state regressions with dashed lines, and the relevant bivariate scatterplots for each

state.20 The panels are plotted in increasing order of the state level education context from

bottom to top, and left to right. The values of the state level control variable, Competitive-

ness of Senate Race, are also noted within each panel. This particular display does not group

states by competitiveness, so it is not well-adapted to assess whether the state educational

context interacts with competitiveness (We will assess this relationship in the next figure).

Each panel shows the scatterplot of the individual level data for that state as gray dots.

The black straight lines are the OLS fits — restricted to only plot within the range of the

education of the individuals within that state. Thus, the OLS fit for Arkansas runs from 8 to

17+ years of education (labeled here as -4 to 5 years of education from a high school degree)

while the fit for Wisconsin is only plotted from 11 years of education and up. The fact that

all values of the within-state variable are not available for every state can be interpreted in

two ways. First, it can be seen as evidence against our simple linear model — it might not

be sensible to calculate some overall slope by averaging across these within-state fits if only

certain states have observed values on certain points of the scale. Another way to put this

concern is in terms of exchangeability. Are all of these slopes representing the same stochastic

process? What we are seeing here is that for Wisconsin and Illinois at least, the domain of

this probability distribution appears different from the domain for the other states.

These plots do raise some questions about how the relationship between participation

20What we term an “outlier resistant regression” is also known as a “robust regression”, where “robust”
means “resistant to influential points”. There is a large body of literature on robust estimation. The
particular algorithm used here is called MM-estimation (Yohai, Stahel and Zamar, 1991). We chose this
particular algorithm because it has proven to be one of the most effective at resisting the effects of outliers
that works by combining two different robust regression algorithms (an S-estimator followed by an M-
estimator using Tukey’s biweight weighting function). For more details and citations on MM-estimation and
the implementation of the rlm function in R see Venables and Ripley (2002, page 161).
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Figure 2: Participation versus Education within States Points are slightly jittered
to show density. Education less than 8 years is coded as “-4”, 12 years of education is coded
as “0”, education more than 16 years is coded as “5”. The solid straight lines is from OLS.
The dashed straight line is from an outlier resistant linear model.

and education might be different among people with low education in this sample (especially

in Wisconsin, New Jersey, and Illinois). Since inference about the state level education is

driven by comparing the different slopes across the states, we have to be careful to realize

that some of what we are comparing is actually missing. If we had many more states, this

missing data problem can be dealt with rather elegantly by the multilevel model and the

probability models that it assumes. However, if those probability models are incorrect, such

that what is missing in Wisconsin, New Jersey and Illinois ought not to be replaced with a

function of what is going on in the other states, then the results of even a model based on a

lot of data could be misleading.
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This plot also shows the classic “horn” shaped pattern of non-constant variance is aparent

in most of these panels. This suggests that we ought to be careful in interpreting standard

errors for the within-state lines — since we are not interested in“telling the story of Arkansas”

or any other particular state here, though, we are not worrying about this. In the context

of many states and the standard multilevel model, however, this heteroskedasticity violates

the standard within-unit probability model that we discussed on page on page 8.21

Each panel of this plot also contains a dashed line representing an outlier resistent fit.

In five of the panels the resistent fit is easily distinguishable from the OLS fit. In the other

panels it doesn’t appear that any particular point is exerting undue influence on the fit. In

each case where the resistent line changes the fit, it moves the slope downward (thereby

predicting less participation) and it tends to flatten the slope (thereby predicting a weaker

individual level relationship between participation and education). This kind of plot is also

useful for detecting departures from linearity. In another version (not shown) we overlaid

local linear (and quadratice) outlier resistent curves on the panels to compare with the

outlier resistent regressions. We also overlaid lines connecting the means of the participation

variable at each value of the education variable — this is the quantity that is being smoothed

with the OLS line assumed in the model. We interpreted the results of those non-linear local

fits in comparison with the global linear fits (of OLS and outlier resistent regression) and

did not detect any systematic patterns. The places where the lines curved the most tended

to be ranges of individual education where the data were most sparse. Thus, we interpreted

the detectable nonlinearities as telling us places we were happy to smooth over rather than

as illuminating critical features of the relationship that we were missing with the straight

lines.

What is the substantive story from this plot? Does education appear to affect partici-

pation more in states where there are few college educated inhabitants? The slopes of the

OLS fits on the bottom two rows of this plot do not appear systematically steeper than those

21In a real substantive application this discovery would require us to revise the confidence intervals shown
in figure 1 since they are based on the standard spherical errors assumption.
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in the top two rows. Without controlling for the competitiveness of the particular election

season, it doesn’t look like state-level educational context has much effect on whether highly

educated individuals are more likely to get involved in politics or not.

When we look at Figure 2, does a linear, positive relationship such as that represented

with β1j = γ10 +γ11% College Educatedj + ν1j in (3) hit us between the eyes? To a seasoned

user of regression the evidence presented in this graph might not be very strong, especially

given the few points in the upper right hand corner of many panels of the plot which appear

particularly well placed to exert undue influence on the slope of a globally linear fit (like a

least squares line) within-state. To deal with this concern the lines plotted in that figure

are the result of outlier resistent fitting techniques. Thus, the summaries presented by those

lines are probably not artifacts of a few stray points. The fact that non-parametric local

fits (not shown) and the global fits overlap quite a bit, suggests that a straight line is a

reasonable summary within the states — to the extent that the two global and local lines

diverge it is relatively slight and in areas with relatively little data. Dealing with concerns

about influential points and nonlinearity does not, however, answer the question about how

to assess the results of data visualization. However, the process that we show using figures 1

and 2 embodies a one general principle: that of comparison.

We find that visualization for multilevel models is most effective if it can allow the

audience to rapidly and easily compare what is plotted to some baseline, or to other plots.22

For example, we assessed linearity by comparing a straight line to a curvey line. We checked

the influence of outliers by comparing an outlier resistent line to a line fit with OLS. By

comparing the scatterplots in each panel to an imaginary plot where the points are evenly

distributed around the line (easy to imagine and therefore not necessary to plot), we can

see that the variance of the residuals will probably vary as a function of the education

of individuals — that is, we will probably have within-unit heteroskedasticity problems

that would need correcting before we felt comfortable with the standard errors arising from

22The idea that we learn from comparison is not new. See for example Holland (1986) and Brady and
Seawright (2004) for discussion of the fundamental role of comparison in establishing causal relationships.
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within-unit regressions. This principle that we learn by comparison is obvious, and it has

been explained in relation to graphical displays of quantitiative data by Gelman, Pasarica

and Dodhia (2002) and the references cited therein. This also means that carefully describing

the conceptual model that we believe to be a good representation of our substantive process

is important — even if we know that we cannot easily estimate our model, or happily trust

and interpret the results if we can easily estimate it. In this paper the conceptual structural

model is represented by (14) — it is our baseline, against which we will compare our displays.

Of course, reasonable people might still disagree about whether a particular line slopes

upward enough to be distinguishable from flat. There is no easy answer to knowing what is

“really there” in a given plot, and this paper is not the place to grapple in depth with this

problem.23 If one has so little data that probabilistic inference is not easy, then the sizes of

effects apparent in a given plot must be large — i.e. if we assume that the power to detect

effects of a particular kind is more fine-grained for the tools of probabilistic inference than

for our eyes and substantive intuition, then the rule is essentially “we’ll know an effect when

we see one” — and, to mix together yet another vague legal maxim, a “reasonable scholar”

facing the same graph ought to agree that what is a feature of the graph is actually a feature.

Reasonable people can disagree on the interpretation of features in the same way that they

can disagree about the interpretation of coefficients even if the numbers are somehow extreme

enough to justify rejecting the common “flat slope” null hypothesis.

In what follows we will try to keep in mind (1) exactly what the baseline model is, such

that we can know to look for features that we have said are meaningful when we specified

the model (i.e. that we are not just looking for interesting patterns based on our substantive

knowledge and intuition, but we are looking for evidence the speaks to our particular model)

23We can, however, note that Buja and Cook (1999) have recently proposed a method for inference from
data visualizations which requires asking people who don’t know much (or anything) about a particular
piece of data analysis to pick the “most special looking” plot out of a group of N plots (N − 1 of which were
generated using random draws from the probability model for a given null hypothesis of “no features” being
apparent in a given graph). If the actual data plot is chosen from among the N − 1 other plots by a person,
then one might say that this plot had a 1/N probability of being chosen merely through chance. Of course,
documenting the results of such exercises would be difficult, but it is an interesting idea.
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and (2) that when we detect a feature with our eyes, we will try to only report it as a feature

rather than noise if we feel that any reasonable political scientist in our field would also

detect this feature.24

Although we always begin with a plot like figure 2 in our own exploratory data analysis,

it is most useful for assessing the reasonableness of the within-state fits and does not allow

as direct a comparison of the units of analysis (the slopes) as did Figure 1. However, that

figure only allowed us to inspect the slopes capturing the relationship between individual

level education and individual level participation controlling for gender by levels of state

level education. It did not allow any look at this relationship by the competitiveness of state

level elections. Our approach to addressing this question is to gather the slopes shown in the

previous two figures into different panels of a single graph. By ignoring the individual points

and focusing on groups of slopes we can most directly assess the structural model that we

specified in the beginning. In Figure 3 each panel collects the regression lines for states with

a given level of college educated population split at the median — low (less than or equal to

22.5%) and high (greater than 22.5% college educated) — organized by level of senate race

competitiveness — also low (more than 25 percentage points separating the winner from the

loser in the state Senate race) and high (less than or equal to 25 percentage points separating

the winner and the loser in the state Senate race). The thick black lines in each panel have the

mean intercept and mean slope of all of the lines in a given panel — weighted by the number

of observations used in each within state outlier resistent regression.25 The grouping of these

plots is also useful for a discussion of what it means to“control for” competitiveness and state

24There is much much more to say about data visualization than we can possibly cover in a short article
devoted to examples rather than theory. Cleveland (1993) is a canonical reference and we also recommend
the work of Tufte (2003, 1997, 1990, 1983) as good places to start.

25We do not recommend this simple weighted average technique for inferential purposes. Lewis (2004)
has shown that the analogue to this technique, using simple within-place sample sizes in WLS of within-
place regression coefficients on place-level variables is not consistent and inefficient, and thus will produce
misleading inferences. He recommends OLS with heteroskedasticity consistent standard errors or a version
of FGLS for the second stage of such two stage estimation of multilevel models. Since this paper is about
visualization as an alternative to probabilistic inference when the conditions of the research design cast doubt
on the properties of single-stage multilevel estimators, we merely use the weighted averages in this plot to
reflect the fact that certain lines were calculated with more precision than others, not as components in
probabilistic inference.
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level education as well as individual gender. That is, some relationship estimated“controlling

for” another variable is most easily understood as that relationship conditional on another

variable remaining constant. As can be seen from the plot, the number of within-state slopes

included in each category is not particularly high. If we added another level-2 covariate,

we should begin to worry about the ability of the data to estimate such relationships — we

would have to rely even more heavily on the linearity assumptions of OLS to “hold constant”

the effects of these other variables.

Another way in which this plot addresses our original model is that the lines are no longer

labeled. That is, the particular identity of a given line with a particular state is no longer

apparent; instead what we see are collections of lines. This is what is implied by the use of a

multivariate normal probability model for the slopes — that the particular identities of the

units within which the slopes are identified are not important, but instead, an overarching

relationship that somehow is a summary of the dynamics within all of the units is what is

desired. In plots like this one we can see how this relationship varies by values of state-level

variables.

If the educational context of a state changes the way that an individual’s education

influences her political participation, then we ought to see systematic differences in the slopes

of the lines (either the thick ones or the thin ones) between the panels of this figure. This

kind of pattern is not evident here — even the weighted mean lines appear to have nearly

the same slope. This picture makes us rethink our initial ideas about state level educational

context as structuring or conditioning the way that individual education drives individual

political participation. While our Figure 1 suggests that there may be variation in the effect

of individual education on participation across states, it seems from further investigation

that our particular model does not capture the source of this variation.

One problem with figure 3 is that the number of lines per panel can be quite small.

In part this is an unavoidable function of the small sample size of this study. However,

in part this understates the amount of information in the two state-level variables — both
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Figure 3: Within-State Outlier-Resistent Regressions Grouped by Levels of

State-Level Educational Context. The thin gray lines show the within-state, outlier-
resistent regressions (MM-estimates) grouped by (1) gender of the respondent, (2) competi-
tiveness of the state Senate Race (less than or equal to 25 percentage points difference=“high
competition”, greater than 25 percentage points difference=“low competition”), and (3) per-
cent of the state population college educated (median split at 22.5% with a college degree or
more). The thick black lines were generated from averaging the intercepts and the slopes of
the gray lines, weighting the average by the sample sizes within state. Unweighted averages
were not detectably different except for Men in High Education States where the Senate
Races were not very competitive. 29



are interval level measures (or nearly interval level) not nominal. One way to show how a

level-1 relationship can vary as a function of continuous level-2 variables is to transform the

continuous variables into discrete variables of the traditional type, with mutually exclusive

categories. This is what we did in figure 3. However, one can also transform the continuous

variable into, say, 2 or 3 pieces, which have overlapping categories. This increases the number

of within-state lines in any given panel, and provides a better sense for how relationships

may change smoothly (or not) across the domain of the continuous variables — rather than

perhaps being an artifact of the particular cut-point chosen in the mutually exclusive category

transformation used earlier.

Figure 4 shows such a plot. Each panel contains the within-state outlier resistent re-

gression lines in gray and a weighted average line overlaid. The bottom 9 panels show the

relationship for men, and the top 9 show the relationship for women. Each of the two con-

tinous state-level variables has been broken into three overlapping pieces (called “shingles”

because they overlap): percent of the state population college educated has three pieces

(16.7% to 23.2%; 21.8% to 27.4%; 23.2% to 33.2%); competitiveness of the state senate race

also has three pieces (0 to 12.5 percentage points; 7.5 to 33.5 percentage points; 32.5 to

100 percentage points). These shingles were chosen to have nearly equal numbers of survey

respondents in each group, and to overlap somewhat, but not too much. The bottom row of

the plot shows how the individual relationship among men changes as the state level educa-

tion changes — holding competitiveness constant at the most competitive level (races where

the winner won by less than 12.5 percentage points of the two party vote). Reading from

the bottom of the first column up 3 rows, we can see how the individual level relationship

relates to changes in the competitiveness of the senate race, holding state level education

constant at 16.7% to 23.2% of the population having a college degree.

Although the panels are still sparse, because we have allowed the repetition of states

across adjacent panels, we have more information that we can use to examine the multilevel

relationship. However, this plot does not make the relationship between educational context
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Figure 4: Conditioning with Two Continuous Variables using Shingles. Within-
state individual level outlier resistent regressions of participation on education are shown in gray. Black lines
show the averages of the gray lines, weighted by the sample sizes of each state. Panel order is (a) low to high
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bars labeled “Competitiveness”. The bottom three rows show the results for men and the top three rows
show the results for women.

31



and the individual level relationship between education and political participation more clear:

the lines do not become more or less flat in any systematic way across the values of these

variables. Some of the individual level relationships (under certain combinations of values

of gender, competitiveness and percent college educated) appear slightly more or less strong

than others. Overall, comparing overlapping groups of states is useful in so far as it does not

arbitrarily discretize what are continuous variables, and in so far as it allows an analyst to

look for a changing relationship across neighboring panels.

In this particular example, these plots have not supported the model that we specified

in the beginning. Does this mean that the method of visualization is useless? Of course

not. The results that we have shown are analogous to having shown a MLE multilevel model

with coefficients where the relevant hypothesis tests do not allow rejection of the null. Given

the strong priors about how education ought to matter differently in different educational

contexts, this is an example where visualization has provided an interesting substantive

result.

We have learned that the relationship between political participation and years of educa-

tion among individuals in 2000, among these states, is not strongly related to the educational

context in which people live. This result argues against the idea that education operates

mainly to provide politically relevant social status to people. If an additional year of edu-

cation appears to provide more or less the same amount of participatory advantage across

places with different educational contexts, then perhaps (a) education in the contemporary

United States mainly matters to enhance political activity via the provision of skills or some

other attribute of individuals that can affect political activity more or less the same across

the nation or (b) the kind of status allocation provided by education is not well characterized

by state level variables, but ought to be measured instead by, say, relative standing within

one’s birth cohort (which is what Nie, Junn and Barry (1996) do) or some combination

of birth cohort and geography (which is what Tenn (2005) does). Or, perhaps politically

relevant social network position is national now. It doesn’t look like it is operating at the
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state level, at least among these states, even controlling for the short term effects of senate

campaigns. Notice that we are making these claims with some humility due to our small

sample size, but we are not underselling our results. If this were the only dataset available

on this topic, then these results without a hypothesis test would be the best we could do

without switching modes of inference.

If we were to implement a multilevel research design with many places (say, towns)

sampled at random from the nation, with representative samples of individuals within them,

the results from this study might suggest that the standard multilevel model might not be

appropriate, even if we had enough level-2 units to engage confidently in likelihood based

inference. Non constant variance and influential points within places would probably be a

concern. And one might think that assuming simple cross-level interaction effects as we did

here would either be misleading or incorrect. We might prefer to investigate the relationships

between educational context, and respondents’ education and participation more intensively

— perhaps allowing a much less smooth relationship between them than assumed by the

simple γ11Z1jXij in equation 5.

Of course the example that we presented here has been quite brief. However, we hope it

has served to illustrate a data analysis that relies on visualization rather than on repeated

sampling based probabilistic inference. But merely illustrating visualization in this way

does not provide much of an easy to articulate rationale. The main point of this article is

that when analysts do not have enough data to make a compelling argument for repeated-

sampling-based probabilistic inference, then visualization can be quite useful; it does not

allow scientific progress to halt because of a lack of fit between the research design and the

asymptotic properties of maximum likelihood estimators.
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Why Graph?

We have suggested that analysts who do not trust the assumptions required for probabilistic

inference do not have to throw away their data, but can fall back on visualization as a

tool that can allow research to progress — even if the strength and precision of arguments

made on the basis of visualization are less than those based on large, representative datasets.

However, when a result does emerge from visualization, it does hit the audience between the

eyes, and thus may be as compelling as many asterisks beside a coefficient in a table.

Another important reason to visualize, even in the presence of plenty of data, is to

check assumptions. Cleveland (1993) summarizes the argument for this: “Without a careful

checking of assumptions, validity is replaced by large leaps of faith; one can only hope that the

probabilistic assertions of confidence intervals and hypothesis tests are valid. Visualization

reduces leaps of faith by providing a framework for studying assumptions.” (14) We do not

elaborate on the assumption checking reason for visualization here, mainly because there is

good literature on this topic even if it is not common to see political scientists use this advice

in practice.26

Another reason that visualization is especially useful for small samples is that the value

of an additional piece of information to readers increases in the range of sample sizes that

we are talking about here. That is, most people would agree that when it comes to scientific

communication, more information is usually better. This intuition, for example, is behind

much of Edward Tufte’s recent criticism of Powerpoint (Tufte, 2003). The problem with

Powerpoint and other screen based presentation software, from Tufte’s point of view, is that,

by design, they decrease the amount of relevant information that a speaker can (or ought

to) convey to an audience. Each screen in powerpoint tends to contain a small number of

bullet points that delimit speaking points. In that polemic Tufte advocates handouts on the

basis that the printed page can carry a much higher density of information than the screen

of a single slide, and notes that more information in fact can enhance an argument rather

26See for example Langford and Lewis (1998); Gelman (2004, 2003).
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than hurt it: “Often, the more intense the detail, the greater the clarity and understanding

— because meaning and reasoning are contextual. Less is a bore.” (Tufte, 2003, page 10,

emphasis in the original)

One theme that Tufte has stressed in his writing about both presentations and display

of quantitative data is that good analysis and presentation is akin to good teaching (Tufte,

2003, page 11) ; it is the opposite from the sleight of hand that characterizes magic (Tufte,

1997, pages 68-71). In fact, plots of within-unit fits are a common feature in the textbooks on

multilevel modeling that we listed on page 8; they are quite often useful in motivating what

it is that such models actually do (i.e. produce a coefficient estimate that is in some way an

average of the within unit coefficients weighted by the amount of information contributed

by each unit). However, such teaching devices are not commonly found in the working data

analyst’s tool kit, which is strange given that at least two of those textbooks explicitly include

chapters on visualizing and describing multilevel data (Pinheiro and Bates, 2000; Singer and

Willett, 2003).

Of course, there is no direct way to present a dataset with 200 countries and 1000 in-

dividuals inside of each one. In that case, even some of the plots that we have shown here

would be awash in a jumble of lines and we would beg the analyst to model rather than de-

scribe. This distinction between the moments when we as readers would feel more confident

in a presentation of statistical data if we only saw more detail, and those moments when

we need summarization and guidance suggests a simple relationship between the amount of

information available in a given dataset and the marginal value of presenting pieces of that

information. As, say, the number of countries in a multilevel dataset increases from 1 to

30 or even 50, we as readers would be grateful for more detail — in this range we desire

elaboration and description of the cases. However, plots with more than 50 panels, or more

than 50 lines, can be overwhelming. After this point then, the smoothing and simplification

of a model is more desirable. By only presenting coefficients and asterisks for relatively small

samples — rather than informative tables or plots (or table-graphics like that shown in Tufte
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(2003, page 16)) — analysts would be withholding useful information from their audience.

When the sample size is small, and especially when these coefficients are the end result of

myriad modeling decisions, audiences ought to be more skeptical, and thus more information

and detail is needed. At some point, of course, the sheer number of within-place lines, points,

and table entries can be overwhelming, and so, when that happens modeling ought to take

the place of description.

What is convenient about thinking about information presentation as having value almost

like a commodity, is that it seems like the desires of the consumers of scientific information

tend to shift from elaborate description to simplified models, roughly parallel with the rates

of convergence of large sample properties of maximum likelihood estimators. That is, one sign

that more information ought to be presented is concern about the large sample properties of

estimators. Thus, perhaps the requirements of scientific communication may map onto some

of the requirements of the most common mode of probabilistic inference in political science.

In general, we think that taking a close look at the micro-level relationships within macro-

level units enables analysts to demystify what can often seem like the black box of multilevel

models. In addition, inspecting such data displays calls on the substantive knowledge and

judgment of the scholar. And, good judgment about modeling decisions is exactly what

exploratory data analysis is about. If in pursuit of such good judgment unexpected patterns

emerge, so much the better.

Of course, the plots and ideas we’ve presented here are not meant to be a particular set

of techniques to be applied everywhere. They are meant to stimulate scholars to develop

their own data displays, and we’ve cribbed many of them from the scholars we’ve cited.

The basic idea is that multilevel models are partly about understanding patterns in y as a

function of X, but also about understanding patterns in β. Scholars are used to exploring

the relationships within their datasets using crosstabulations and bivariate scatterplots, but

are perhaps not as used to exploring the relationships between their coefficients. In this

article we’ve tried to suggest and present a few different ways that data analysts can make
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their varying coefficients easier to handle.

In an article about tools, it is worth giving credit to the tool makers. The plots shown in

this article were all created with the R language R Development Core Team (2005). Within

R they all relied on the Trellis graphics system that was specifically designed for visualiza-

tion of conditional relationships (Becker, Cleveland and Shyu, 1996; Cleveland, 1993). The

implementation of Trellis graphics in R used here is from the Lattice package (Sarkar, 2005).

All of the code used to produce this article is available embedded within the source of the

document itself in Sweave format at http://www.umich.edu/~jwbowers/papers.html.27

A basic problem about any body of data is to make it more easily and effectively
handleable by minds —our minds, her mind, his mind. To this general end:

• anything that makes a simpler description possible makes the description
more easily handleable.

• anything that looks below the previously described surface makes the de-
scription more effective.

(Tukey, 1977, page v)

27For details on Sweave see Leisch (2005, 2002)
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