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Appendix B A General Representation of Interference Effects
Here we propose a general representation of interference effects which enables us to reason
about datasets and experiments of any design or size.

Appendix B.1 The complete interference case

We begin by developing a way to write down the observational identity (i.e. the equation relating
observed outcomes to potential outcomes) without any restrictions on the potential outcomes. Later
we will consider how to prune or constrain this equation to reflect both the facts of design, outside
knowledge about outcomes, and hypotheses about effects and interference. In the same way that the
notation for potential outcomes allowed us to formalize our reasoning about counterfactual causation,
so too will a notation for sets of potential outcomes and interacting assignments help us reason about
and specify questions we want to ask of a given design. We make use of the isomorphism between
graphs, networks, and matrices to accomplish our task.

In the most general terms we can think of any set of units (an experimental pool for example), as
a “complete graph™:

Figure 12 shows such a graph. Here we have n = 3, and thus 23 = 8 potential outcomes per unit.
A complete graph has n(n — 1)/2 edges (or 2n(n — 1)/2 = n(n — 1) possible unidirectional paths for
interference). So, figure 12 has 6 paths of possible interference. Notice that each unit here depends
on all the other units and influences all the other units in turn whether or not the unit is assigned
treatment or control.

Figure 12: A Simulated Network and field experiment: treatment (circles) and control (squares). Without
further assumptions, treatment or control assigned to any unit may influence any other unit. The edges have
arrows to show that influence may be directional.

The vector of possible potential outcomes for unit 1, y; , given the graph in figure 12 and no
further assumptions in is, lexicographic order:

Y. = {)’1,{111;,)’1,{110},)’1,{101},)’1,{100},)’1,{011},)’1,{010},yl,{001},y1,{000}} (24)

If an arrow does not connect a unit i to another unit j, this we can write y; 7,z ) = y 12— for
any Z; # Z!. Since we are only considering the case of binary treatment here, this general statement
of equality can be simplified to say, y;z-1z-i = yjz-=0z-i- Thatis, for a given vector of treatment
assignments to j and every unit but 7, unit j would show the same response whether unit 7 is treated
or not. Equalities of this form are implied by such pruning of the complete graph. That is, we set
potential outcomes equal to each other when we take away edges in the graph.

Before we begin to prune the complete graph, let us ask what the complete graph implies for the
relationship between what we observe for unit 1, ¥, and the potential outcomes shown in equation 24:
what is the observed outcome identity equation implied here?
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In scalar form we might write this identity as follows:

Y, :Z3(Zz(Zly1,111 +( - Z1)y1,011) +( - ZZ)(Z1y1,101 +( - Zl)yl,OOI))+
(25)
(1- Z3)(Zz(Zl)’1,110 +(1 - Zl)y1,010) +(1 - Zz)(zlyl,loo +(1 - Zl)yl,OOO))

Notice that equation 25 specifies the circumstances under which what we observe for unit 1, Y;,
represents any of the potential outcomes possible from the complete graph and no further restrictions.
For example, it says that we would observe y; z-(;.1.1y whenZ, =27, =723 =1,orZ = {1,1,1}. We
can write this identity more cleanly using matrices. The matrix representation also allows us to
write this equation for any sample size (whereas the scalar form would get incredibly messy very
quickly). The matrix representation collects all of the potential outcomes into a 2 x (2")/2 = 2!
matrix that we call p. For n = 3, we might write p for a unit i as follows:

p; = Yiirnr o Yitio o Yiior o Yi100 (26)
Yio11  Yio10 Yio001 Yi000

Equation 25 multiplies each of the entries in p, by the corresponding collections of treatment
assigned to each unit. If we collect those ¢ = {Z;, (1 — Z;)} into a 2 x 2"~! matrix, Z, we can write
the observed outcome identity equation very succinctly for binary treatments as

Yi = 1axo) - (Zi X p) - L1y, @7

where Z;, represents the Kronecker product, written ®, of all of the vectors representing the treatment
possibilities for the units in the study, Z; = ®j §i=6,0;08,=1{Z,(1- Z)1®1{Z,, (1 -25)}®
{Z3,(1 — Z53)}. The terms 1 are merely vectors of 1s, which collapse the result of (Z; X p;) into a
single equation.

Here we write out equation 27 showing the full matrices (but doubly transposed to fit on the
page) for n = 3:

VAVAYA (1 -2))2Z3 Yilll  Yioll 1
212> (1 - Z3) 1-2Z)7Z, (1 -27Z3) Yil10  Yi010 1
Y,=(1 1)- X ’ ’ 28
' ( ) Z1 (1 =2»)Z;5 1-Z)( =22 Yi 101 Yi,001 1 (28)
Z1(1-2)(1-2Z3) (A1-Z)(A-2)(1-2Z3) Yi, 100 Yi,000 1

Since a priori all units in the study have the same relation between potential outcomes, treatment
assignments, and observed outcomes, we can create the n X 1 vector containing the equations for all
of the units in the study, Y, simply by multiplying ¥; by 1(,x1), such that Y = Y; X 1(,)).

Appendix B.1.1 Summary

We have shown that with only knowledge about (1) the size of the experimental pool and (2)
the number of unique possible treatments (here set to 2), we can have a compact notation for the
possible potential outcomes, treatment assignments, and the identity linking potential outcomes and
treatment assignments to observed outcomes. When 7 is large, these matrices become too large to
generate in software (let alone to write down their entries with a pencil), yet having this framework
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now allows us to represent restrictions on this case for more realistic experimental designs and
empirical structures; which in turn will allow us to specify and test hypotheses about treatment
effects and interference.

Appendix B.2 The Pruned Graph

No real study entertains hypotheses about 2" potential outcomes in any detailed manner. Even
with n = 40 we would have 1.1 - 10'? possible potential outcomes! Even if we want to hypothesize
directly about interference, we do not want to specify patterns of hypotheses for so many possibilities.
In a series of steps here we show how one may (and must) reduce the set of potential outcomes
considered. First, one may use information from the design of the study itself. Second, one may
have a good idea about subsets of units which ought to be seen as not interferring with units in
other subsets: For example, Sioux City, Lowell, and Oxford in the newspapers example were so
geographically distant from the other cities that we felt comfortable claiming no interference for
these cities. Third, the particular hypotheses that one desires to consider may involve further
simplifications: For example, in the social network example, we collapsed set of potential outcomes
even further (in fact, we could collapse them to only two potential outcomes and scalar functions
of network characteristics since the particular patterns did not matter). There is no requirement to
collapse the potential outcomes down to only two pieces, but fewer makes our exposition here more
clear.

Appendix B.2.1 Pruning by Design

Most of the potential outcomes listed in lists such as equation 24 will never occur in any real
design.'® For example consider again the n = 40 case, such a design would involve assigning exactly
20 to treatment. Thus, rather than 2" outcomes we have (‘2‘8) = 1.378 - 10! which has 0.13 as many
entries as the original set. Of course, in that case, we still have too many potential outcomes to
consider based only on how treatment was assigned.'’

What does this mean for the core of the equation relating potential outcomes to observed outcomes
((Z; % p;) )? It means that the matrices of assignments, Z; and potential outcomes p; are smaller —
reflecting now the actually possible assignments rather than all possible n-tuples.

Appendix B.2.2 Pruning by Knowledge of Structure

We say “knowledge” here to distinguish it from “hypotheses about structure” although, of course,
we could include such structural statements as hypotheses. However, in many applications there are
subsets and groupings or even types of interference which are just not credible or would never be
interesting. Representing such incredible (i.e. not even worth hypothesizing about) relations prunes
the complete graph even more.

Figure 13 shows three plots representing certain structural presumptions about interference and
the related adjacency matrices for the case of n = 5.

Usually we have some idea about the groups of units within which interference is apt to occur,

1That vector can be thought of as all of the possible size 3 subsets of the 2-tuple {0, 1}.

7When an experiment uses blocking or pairing the set of possibilities may reduce even more
dramatically. For example, if we had organized 40 units into 20 pairs, then the set of possible
treatment assignments in which exactly one unit in each pair is treated would have about 1000000
elements. In the Newspapers study the total possible treatment assignments are 16 compared to 70
for the unpaired case.
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No Interference Some Interference Complete Interference

. A B C
12345 12345 12345
100000 101000 101111
o 200000 o 210000 210111
300000 300000 311011
400000 400001 411101
500000 500010 511110

Figure 13: Graphs and corresponding adjacency matrices representing different interference/connectedness
structures.

or are willing to make some other decision which simplifies the “Everything is related to everything”
statement represented by the complete interference graph.

Notice, in fact, that the adjacency matrices (or graphs) tell us specific things about the relations
among potential outcomes. In particular, the Os on the off-diagonal elements of those graphs tell us
that certain sets of potential outcomes can be made equal. To make this more clear, let us think about
what kinds of restrictions on the complete graph are implied by the graph in the central panel. We
have reproduced the adjacency matrix here with one change — we have made the diagonal contain
Is. We’ll explain why soon.

11000
11000

B=|{0o0100 (29)
0001 1
00011

The restrictions on the potential outcomes for unit 1 are those listed in the first column of B. In that
column we have 3 zeros in positions {(3, 1), (4, 1), (5, 1)}. These zeros imply the following equality:
VZpas)Z-qzasy = Y12y, 523450 for all Zz 45y # Z;3’ 45)" That is, any set of potential outcomes for the
unit which are the same in all entries except for those reflecting assignment to any combination of
units 3,4, and 5 can be considered the same.

The complete graph for binary treatment with n = 5 with no further information would imply
2% = 32 potential outcomes for each unit. The design of the study would reduce this number to
(g) = 10. And, now stating restrictions on the possibilities for interference (such as noticing that one
of our units was just too isolated (perhaps by geography) to interfer or be interferred with, leaves
us with the following sets of potential outcomes: for the isolated unit 3 we have only 2 potential
outcomes {ys..0..1»V3..1..,} and for the other units (which interact with only one other unit) we
have 4 potential outcomes { (0.0.....}> Vi (0,1,...}> Yi.(i.0,...3» Vi 1.1, ) for i € {1,2,4,5}.

Now, the matrix encoding possible interference, B, does tell us exactly how many potential
outcomes are available for hypotheses, but we cannot use it simply via some matrix multiplication to
simplify (Z; X p,). After all Bis n X n and (Z; X p;) is 2 X || where || is the size of the Q matrix
in terms of the numbers of z vectors it contains. In our simple n = 5 and n, = 2 case, |Q| = (g) =10.
One way to write down this operation uses the following algorithm:

Define a function Pos(M, s) which returns the positions of the scalar number s in the matrix M.
So,
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}
543,51, (30)
J
}

Now B is n X n and rows and columns hold the units in the same order (from 1...n).

Now, consider all pairs of vectors of treatment assignments, Z, Z’ written in partitioned form
focusing on unit j as Z = {Z;,Z_;} and Z' = {ZJ’,, ZE—j)}‘ Algorithmn 1 shows how we would infer
the relations between pruning the graph and the set of possible potential outcomes.

input :An adjacency matrix, B, with 1s on the diagonal indicating connections with 1 and
lack of connection with 0. Two vectors of treatment assignments, Z and Z/. In the
simple case, these are of length (Z)
output : Two vectors of treatment assignments, Z and Z’ either unchanged or set to be equal
by replacing a numeric element with a symbol.
it Z# 7 suchthatZ; # Z; and L) = Z;_; and B;; = 0 then
‘ SetZ; =.suchthatZ ={Z; = ., Z_j}and Z/ = {Z; = .,ZE_J.)} and thus Z =7/
else
| do nothing
end

Algorithm 1: An algorithmic representation for how an adjacency matrix restricts potential
outcomes for a unit ;.

So, if B3 = 0 then, for unit 1, we would set equal any potential outcomes which differ only in
the third element (indicating a difference of treatment to unit 3). So, at this point we have 2 potential
outcomes to consider for unit 3 and 4 for each of the other units. What hypotheses might we care to
assess?

Appendix B.2.3 Specifying and testing hypotheses involving interference between units

Given restrictions of design and structure (often geography but it could represent other kinds of
knowledge). We tend to have a small set of potential outcomes on which we can focus. How should
we write down hypotheses that we desire to assess?

Often, we are only interested in hypotheses in which units do not interfere and we write:
Yizi=\Zey = Yiz=1Z, and yiz-0z_, = Yizi=0z,_, for all Z # Z’. That is, the essence of enter-
taining ideas about “no interference” is to drastically prune the set of potential outcomes.

However, imagine we had some claims to assess involving consideration of interference — either
because we want to assess hypotheses about treatment effects in the presence of interference or
because we want to assess hypotheses about the interference process itself. In the n = 5 example
above, we have the opportunity to make such hypotheses about units 1,2,4 and 5 (assuming that 3
is so isolated that hypotheses about interference with it would be uninteresting). Imagine, again
for simplicity, the constant and additive treatment effect hypothesis generator for unit 3 such that
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V3doulin) = V3,000 T T O V37,217 5 = V3z3=02.5 + T for any Z 3. So, control response turns into
treatment response by the addition of a constant for unit 3 (according to this theory that we desire to
assess/this question we desire to ask).

Now, what do we mean by “control response” turning into “treatment response’ for the other
putatively interferring units? Recall that the potential outcomes for those units were of the form:
0i40.001s Vit Yid1.0ys Visra,.y ) for i € {1,2,4,5}. We see two ways for unit i to have a control
response in those four potential outcomes. In one way, both interferring units have control {0, 0}
and in the other way, one unit has treatment and the other control, {0, 1} and {1, 0}. When another
potentially interferring unit receives treatment, then the focal unit, i, under control may receive some
spillover (or at least we may be interested in this question). So now, we use the {0, 0} outcome as the
baseline against which we compare either the direct treatment or spillover (or amplification) effects.

At this point we could write each of the three potential outcomes y;.1....1» Yi(1.0...}> Vifl.1...}
as a function of y; 0o, and some parameters. In our examples, however, we further simplified
the hypotheses by saying that we were only interested in hypotheses either about direct effects or
spillover effects, not amplifying effects. This decision further simplified our set of hypotheses to
only two equations: (1) one for the situation in which unit i received control and the potentially
interfering unit j received treatment and (2) for the situation in which unit i is assigned the treatment
condition (in which we claim that y; ;0. .} = Yij.1...)-

For example we might imagine a spillover effect when unit 7 is in the control condition and the
potentially interferring unit j is in the treatment condition: y; z-0z,=1.. = Yiz=0z=0. + w7 Where
w tells us the amount of the treatment effect that spills over. And we might also imagine a direct

constant effect when unit i is treated: y; z,=1z,-0. = Yiz=1z,=1.. = Yiz=0z;=0, + T-
One could also imagine interesting hypotheses about all three potential outcomes: perhaps one
might write both y;z.-17,-0. = Yiz=0z=0. + T and y;z-1z;=1. = Yiz=02z=0, + at to allow for an

amplification effect (i.e. the effect of treatment is made stronger when an interfering unit is also
treated).

Another approach to winnow the set of potential outcomes is to restrict attention to scalar
functions of them (Hong and Raudenbush 2006). So, for example in the section on social networks
we asked the question about whether (and to what extent), treatment effects might depend on the
number of treated connections. In essence this kind of hypothesis (and our current framework)
involves both the decision about how the function of connections ought to influence the direct
treatment effect, and also a decision that we do not want to entertain hypothesis about particular
combinations of potential outcomes. So, we could, in essence, think about our potential outcomes
as non-interferring except in the particular way that we desired to scrutinze. That is, we could write
YVizi=12; = Yiz;=02_y=0 T T + TwZ'S and Yiz;=02; = Yiz;=02_y=0 T T wZ'S.

Appendix B.2.4 Summary

This part of the paper has shown that (1) one may represent the complete set of potentially
interferring potential outcomes in a compact form and that (2) one may begin to restrict attention to
managable subsets of those outcomes using knowledge of design, information about structure, and
hypotheses about effects. In general, one may use the construct of a graph or network to represent
any form of interference and to allow formalization of hypotheses about treatment effects and
interference. Even though the set of potential outcomes can become immense very quickly (tending
to follow the law 2mumberofedges __ actyally this much more like a logistic function that asymptotes at
|Q2|), we need not make untestable no-interference assumptions merely because we are overwhelmed
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with the size of the possibilities. Rather, we can use what we know and what we care about (from
past theory and literature) to engage with manageable numbers of counter factuals in direct and
substantively meaningful manners.

Appendix B.3 Applying the General Representation to the Newspapers Study
We began this paper by talking informally about the placement of cities on a map and the types
of interference that the geography might imply. Such ideas led us to write a set of hypotheses:

o) = Zi(yioo + 1)+ (1 =Z)Vioo) for i € { Yakima, Oxford, Lowell, Battle Creek, Sioux City }
Y000 = 7 o0 + ) + (1 = Z)(yigo + wr) for i € { Richland, Midland, Saginaw } '
(€29)
Now we have a more general way to formalize the process of hypothesizing about interference.
Let us apply it to the newspaper advertisements study.

S\@ity

B at reek

d

Figure 14: A directed network (or graph) representation of an interference hypothesis for the Panagopolous
Newspaper study. Squares represent cities assigned to treatment. Circles are cities assigned to control. Arrows
show direction of spillover: from the larger city of Yakima to the smaller city of Richland, and two way
interference between Midland and Saginaw.

Figure 14 shows the cities as nodes on a graph. We know that there are K = 16 possible ways to
assign treatment to the pairs of cities in this study, so, the complete graph would imply 16 potential
outcomes for each city. A graph without any connections (encoding the idea of no interference)
would imply 2 potential outcomes for each city.

We presumed, on the basis of knowledge about how local advertisements in newspapers relates
to the geography of the United States that the only possible connections would be between Yakima
and Richland and between Midland and Saginaw. And later we hypothesized that the interference
would be one-way from Yakima to Richland, but symmetric between Midland and Saginaw. This
graph encodes these statements about connections.

What potential outcomes are available for us to consider after drawing this graph? The adjacency
matrix of the graph tell us that we have two potential outcomes for each of the isolated cities (or cities
not plausibly interfering or interferred with). We also have two potential outcomes for Richland (but
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both depend on Yakima): y; 7,-0z,-1 and y; z,=1.z,=0 for i =Richland and j =Yakima. While Richland
and Yakima are in the same pair, and thus only one of them may be treated at a time, Midland
and Saginaw are in different pairs. So, Midland and Saginaw each have four potential outcomes to
consider: y; (11},i105-Yi,(01}-Yi, 00}, Where we write {11} as shorthand for {Z; = 1,Z; = 1}.

For the isolated cities, we claimed (for simplicity) that we were interested in whether the
hypothesis that A(y; z-0.) = yiz=0. + T = ¥iz-=1.. could be rejected by our data, where we write y; z.-¢..
to indicate that we ignore the other potential outcomes in the network for these isolates.

Since Yakima is only a source not a destination of interference, its hypothesis is likewise
h(y:z=0.) = Yiz=o0. + 7. In this scenario, producing interference is the same as experiencing no
interference under the assumption that the people of Richland do not steal the newspapers from
Yakima and thereby diminish the treatment effect in Yakima [i.e. when spillover occurs with an
intervention that is not renewable or is excludable, then perhaps this idea that being the source of
spillover is the same as not experiencing interference is not a good one.]

Richland has two potential outcomes to consider but they both may involve interference: y; 10,:.01-
We wondered whether the data would exclude the idea that some treatment spilled over from Yakima
to Richland, and between Midland and Saginaw, when the recipient of such spillover was in the
control condition such that: (y;z-0z,=1) = Yiz=02z=0 + wT Where w is the proportion of the overall
treatment effect, 7, that spills over. We also decided to assess this hypothesis about spillover in the
situation in which there is no interference in the treatment condition — the idea being that direct
experience of treatment drowns out any treatment leaking over from another city and also that there
is no amplification of treatment.

These considerations meant that we did not need to specify hypotheses about all four potential
outcomes available for Midland and Saginaw. Rather, by hypothesis, we wrote y; 11 = y;10 = yi.1.
and A(y;00) = yioo + T = Yi1..

We listed those hypotheses in a condensed form in equation 31. And we can now see that the
equations here:

i —TZ; when i € { Yakima, Oxford, Lowell, Battle Creek, Sioux City }

; —7Z; —wtZ; when i=Richland, j=Yakima

Yioo = (32)

Y;
Y;
Y, —1Z; —wtZ; when i=Midland, j=Saginaw
Y —1Z; —wtZ; when i=Saginaw, j=Midland

arise from solving each observed outcome identity equation 27 (one for each type of network
effects) for the potential response to the uniformity trial. And the randomization distribution against
which we compare functions of observed data arises from the design of the experiment itself.

Appendix B.3.1 Workflow and Summary

In this section, we have provided a formal framework to support reasoning about treatment
effects and interference effects in comparative studies of arbitrary design and size. If one can draw
a graph or a network diagram (or specify an adjacency matrix) then one can know which list of
potential outcomes are available for use in assessing substantively motivated hypotheses.
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