
Dear Experimenter,

Here is a typical scenario: A researcher runs an experiment to find out whether a
treatment has an effect. She finds a difference between her treated and control units.
She reports this difference to her colleagues and also provides a confidence interval
for what she now calls a “treatment effect”. She thus makes two statements: one
about a comparison of treated and control units and another about a plausible range
of effects.

Randomization makes the comparison statement meaningful as a causal inference
(i.e. one can imagine the counter-factual condition in which treated were control and
vice-versa) and also believable (i.e. the treatment effect ought to only reflect system-
atic differences caused by the experimental intervention and not other distinctions
between units). What makes the statement about a confidence interval meaningful
or believable?

The researcher reports a confidence interval because she wants to say something like,
“it could have been otherwise.” She sees only one number from her study, but she
imagines that it could have been otherwise. Or, at least, she knows that skeptical and
grouchy people will ask, “I see you have an effect. It seems quite small. Is is basically
the same as zero? Is your effect basically just chance variation?” Say she provides a
small p-value for a null hypothesis test of no effect. The grouch might respond, “I
see that if your null hypothesis of no effect were true, one would only expect to see a
treatment effect as large or larger than yours one in a thousand times. But, what are
these ‘times’? What does ‘probability of observing my effect given the null’ mean?”
An easy and excellent answer would be to say, “By ‘times’ I mean, each time I draw
a new sample from the nearly infinite but well-defined population using my well-
specified sampling plan. My null hypothesis is about the population to which I aim
to infer from my sample.” Even a grouch would have to at least give the researcher
a grudging nod with that answer.

So, we know what makes experimental comparisons meaningful and credible, but
what about p-values or confidence intervals about those comparisons? Statistical
inference is meaningful when the target of inference is clear. That is, when we have
sampled from a real population, we have something towards which we desire to
infer: the population. We observe a sample mean, and statistical inference encodes
what we expect to observe in the population given the sample.1 Did this researcher
draw her experimental pool from a population? Or do these happen to be the villages
willing to cooperate with her (a “convenience sample”)? Given what she learned in
her statistics class for political science graduate students, her statistical inference is
not likely to be very meaningful unless she either knows how nature produced her
data or she has sampled from a population. In this paper, we present a different
thought experiment that will allow her to make statistical inferences meaningfully:

1Many political scientists substitute a population-generating-engine (or data generating process, or
model of outcomes) for a real population. Others use the thought experiment of a “super-population”.
And still others re-direct inference toward the mental states of the scientific community. Statistical
inference can be meaningful in any of these thought experiments as long as we can justify them: for
example, super-population claims are sensible as long as we know how our sample was drawn from
the super-population (thus linking meaningfulness with credibility); population-generating-formulae
require other explanations and justifications.
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We run an experiment because our target of inference is from the treated group to the
control group. Our target of inference is a counter-factual: based on observing how
some units respond to treatment, we infer how all of the units would have responded
had they been treated [or had treatment been withheld].2

Statistical inference is credible when our observations are linked to our target of
inference in some clear way — when we know how our sample arrived from our well-
defined population or our data generating process. In addition, statements about
p-values or confidence intervals commonly require other justifications: large samples
and independence of observations are two of the most common justifications.3

Thus, the mean of 2 units drawn via a simple random sample from a large and well-
defined population supports meaningful statistical inference to that population, but
it would be hard to calculate a 95% confidence interval based on those data which
would not contain the true population value only, and exactly, 5% of the time. Stan-
dard t-tests require central limit theorems, which tend not to operate with n = 2.
At the same time, one could imagine a convenience sample of 50 arguably indepen-
dent units for which statistical tests would operate as advertised, but for which the
answers would not be easily interpretable. Berk (2004, Chapter 4) poses the “proba-
bility of what?” question to clarify these concerns: for the 2 units randomly sampled
from a large population, the answer is “probability of seeing the same thing in a
new sample” or “probability of seeing an answer like the one in the sample in the
population”; for the convenience sample the question is difficult to answer without
more information.

The inventors of randomized experiments were particularly concerned about how
to make statistical inference both meaningful and credible for their experiments —
agricultural studies on convenient sets of fields near research stations. Neyman (for
average treatment effects in large samples) and Fisher (for arbitrary sharp null hy-
potheses in arbitrary size samples) each came up with a different way to allow the act
of randomization to justify statistical inference — that is, to allow statements about
ranges of plausible values for treatment effects (i.e. confidence intervals) to be mean-
ingful and credible based only on the design of the study. In the intervening years,
despite continuing development of these ideas in some statistical fields, social sci-
entists have forgotten about these facts.4 Instead, we randomly assign interventions
within convenience samples and then report p-values for which the theoretical justi-
fications require sampling from infinite populations or knowledge of data generating
processes. We know this is wrong in theory.5 Is it wrong in practice? Sometimes.

With large experimental pools and well-behaved outcomes and homogeneous treat-
ment effects, linear models (especially least squares models for continuous outcomes)

2In fact, we can easily think of statistical inference in an experiment as telling what would happen if
we sampled treated units many times from the population defined to be the experimental pool (Fienberg
and Tanur, 1996; Hansen and Bowers, 2009).

3And of course a lot of statistics is about making statistical inference credible using alternative
justifications when large samples or independence fails.

4However, social scientists working on survey sampling continued to use Neyman’s ideas via their
interpretations by Kish (1965) (or other social science oriented statisticians) without perhaps being
aware of it.

5Freedman recently reminded us about this (Freedman, 2008b,a, 2007) although most of the early
textbooks on the analysis of experiments commented on this as well.
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approximate Neyman’s randomization based statistical inferences very closely (Green,
2009; Schochet, 2009). That is, statistical inference from an experimental result may
be meaningful by referring to the randomization assigning treatments and may be
credible by using the linear model as an approximation as long as the approximation
itself is justified in the particular design analyzed.

What should one do when the approximation is suspect (when (a) randomization as
an instrument is weak and/or (b) the sample size is small and/or (c) the outcome
is binary or otherwise very non-Normal and/or (d) the treatment effects are very
heterogeneous)? What about when we care about some function of the potential
outcomes other than the average treatment effect? Or perhaps when one desires to
assess proposals for covariance adjustment before actually estimating effects? This
paper proposes one set of methods that respond to these needs.

First, it teaches about how randomization can, in principle, make statistical inference
meaningful and credible using Fisher’s framework rather than Neyman’s for clar-
ity, simplicity and flexibility.6 Then it goes beyond the few textbook discussions of
randomization-based inference to discuss how one may both take advantage of the
precision enhancing and random imbalance-adjusting properties of the linear model
while still making statistical inference meaningful and credible based only on the
randomization occuring within the experiment. And finally, it addresses the ques-
tion about choice of linear model specifications and discretion which has bedeviled
students of experimental methods: power analyses of different test statistics may be
done before estimating treatment effects in our approach.

For most of you, this paper will not be relevant: you have well-behaved outcomes
with large samples and very little heterogeneity of treatment effects. For the rest of
you, I hope this paper is useful, at the very least to alert you to another way to make
statistical inference of experimental results as compelling as the you already do for
the causal inferences.

This is a work in progress.

I look forward to your comments.

Jake

6Freedman notes that Fisher’s framework is immune from his criticisms in an aside in his paper crit-
icizing regression analyses of experiments. In other work we take advantage of Neyman’s framework
— we are not partisans in that old debate!
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Abstract

How should one estimate and test comparative effects from a field experiment
of only 8 units (i.e. where consistency as a property of estimators offers little
comfort)? What does statistical inference mean in this context?

Although we are taught to infer to a well-defined population from a sample,
or from a sample of outcomes to a model of such outcomes, in a randomized
experiment the most basic and important inference is between the treatments:
after all, the point of randomizing is to allow us to say how the treatment group
would have behaved had treatment been withheld. Most common tools for infer-
ence in political science are justified as tools to infer to infinite populations from
samples generated with known sampling plans or to models known to generate
such populations: they are not built to infer between treatment and control in an
experiment, although they may often well approximate such inferences.

In this paper we show how one can base testing and estimation on models
of the design of the study, and specifically, on the process by which the values of
the explanatory variable were produced. These models of assignment form a basis
for valid hypothesis tests, confidence intervals with correct coverage, and point
estimates.

As an example, we show how one may use design-based inference to make
credible tests using a unique field experiment of the effect of newspaper adver-
tising on aggregate turnout with only 8 observations. In addition, we present
some innovations in the use of linear models as a way to allow outcome- and
parameter-models to assist the design-based inference without requiring com-
mitments to the usual assumptions that would be required for direct causal in-
ferences using those methods and which would protect the analyst from charges
of data snooping.
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1 Statistical Inference in the Land of Make Believe

Statistics as currently practiced in political science requires a lot of imagination: we
imagine that nature produced our outcome variable according to some known prob-
ability distribution (i.e. we posit a data generating process); we imagine that our
sample size is close to infinite; we pretend that our data arrived via a known sam-
pling mechanism from a known population1; and we fantasize that we know the
mathematical formula which relates control variables with both the variable(s) of
causal interest, called here the “explanatory variable”, and the outcome. Sometimes
we add to this list of stories the name of the probability distribution(s) which de-
scribes our uncertainty about the effects of our covariate and explanatory variables
prior to estimation.

Data generating process (DGP) models require at least some such stories.2 And these
stories in turn require a set of explanations about how the values of the causally
important, or explanatory, variable appeared in our data (i.e. about the research
design producing our data): were they randomly assigned? did units (e.g. people)
consciously select which values to take on? or was the process otherwise haphazard
(or unknown but not random)? or perhaps a more or less known function of other
variables? And, of course, the meaningfulness of our results depends crucially on
how these values (and the values of the outcome variable) map onto the concepts
with which we explain how the world works (i.e. about concepts and measurement).
We often call these stories, “assumptions”, and a large part of statistics as applied in
the social sciences focuses on helping articulate exactly how worried we ought to be
when our assumptions are approximations.3

Of course, assumptions help us simplify the world enough to ask and answer specific
questions. And the best storytellers compel us by carefully and clearly justifying each
required story. For a simple example, consider how one might justify the assumption
that our outcome was produced by nature according to a Poisson process. A weak
justification of this assumption might be to say, “I observe counts. Counts are often
conveniently modeled as a Poisson DGP.” A strong justification might be to notice
that, at the micro-level, the values of the outcome emerge from a process in which
events happen in time independent of one another.4 Given this micro-foundation,
one can logically deduce that a Poisson DGP for the counts of events occuring in
a given unit of time follows.5 If, however, the values of the outcome are observed
to be counts, but the analyst has no detailed story about how those counts came to

1Perhaps one which makes our analysis units independent of one another, or perhaps which pro-
duces some known dependence among them

2Note that least squares and all Bayesian models imply a DGP story, although only Bayesian models
must be explicit about prior distributional stories.

3For more accessible discussion about the different justifications for statistical inference see Berk
(2004, chapter 4), and for discussions linking these justifications (or “modes”) to the potential outcomes
framework for causal inference see Rubin (1991, 1990).

4Perhaps this process is itself the result of some strategic interaction of units, some cooperative
interaction, some random interaction, or no interaction. We avoid providing a substantive theoretical
story here in order to keep attention on the statistics.

5Equivalently, one can deduce that the amount of time between the occurrence of such events fol-
lows an exponential distribution ( See, inter alia, Ramanathan (1993, page 64), King (1989, page 48-50),
Grimmett and Stirzaker (1992, page 229).). Derivations of both are available in most texts on probability
and an expanded example is available online at http://jakebowers.org/PAPERS/poissonproof2.pdf
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be, then she would be wise to feel uncomfortable telling the Poisson story (even if
there is no other easily available story for her to tell). That is, DGP models (among
the other justifications for a given bit of data analysis) can be made more or less
plausible depending on the persuasive and logical skills of the story-writer.

Although artful and careful persuasion is possible, the creation and justification of
these stories, or “commitments” (Berk, 2004), can often seem very burdensome to
scholars who have compelling political and social and economic theory to engage,
but who don’t have much to say about the statistical stories that justify and make
meaningful common data analytic practice. In this article we propose to make the
justification of statistical inference less burdensome for at least some political sci-
entists. In so doing, we hope to help scholars return and maintain their focus on
scientific inference (and the closely related causal inference), concepts, measurement,
and theory rather than on half-believed rationalizations of conveniently chosen mod-
els.

We do this by introducing, explaining, and demonstrating a mode of statistical infer-
ence which is frequentist but which does not require the stories demanded by DGP
based approaches.6 Of course, it, like all methods, requires its own fictions and fan-
tasies. Specifically, “randomization inference”, as developed by Neyman (1990) and
Fisher (1935) does not require a model of outcomes but it does require a model of
assignment.7 Thus, since it requires its own stories, it is not uniformly better than
extant approaches. We will show, however, that the pretense required of this mode
can be easily assessed — an assessment of a kind that would be quite difficult for
DGP based approaches.8 Basically, since inference in this mode is based primarily
on stories about the design of the study rather than on outcomes, there is more pos-
sibility for an analyst to provide strong and credible justifications for their statistical
inference in so far as the design of their study is under their control. In contrast,
inference requiring models of outcomes is almost never based on parts of the study
under the control of the researcher, and thus, such stories are harder to believe and
require more work to be credible.

6And as a frequentist approach does not require explicit justifications of prior distributions.
7 This body of techniques closely related to “exact inference” when asymptotic approximations are

not used and to “permutation inference” — a term which highlights one of the mechanisms for gener-
ating estimates. We use “randomization inference” here and elsewhere to emphasize connections of the
technique with design. Although these terms are very closely related, they are not identical. For exam-
ple, Neyman (1990); Imai (2008); Hansen and Bowers (2009) demonstrate randomization based inference
that is neither exact nor permutation based while Keele et al. (2008) advocate an exact and permutation
based approach in randomized experiments. We will demonstrate both exact and approximate versions
of this mode of inference in this paper.

8Bayesian approaches also require a statement about a data generating process. Assessment of
the assumptions required of such models is also possible, of course, although such assessments are
less informative than those used to check approximations used in randomization inference, the kind
of inference introduced in this paper. However, it is worth noting that, in addition to the kind of
formal linking of data-generating-process claims with real-world processes sketched in the case of
the Poisson distribution, one may use research design to rule out certain kinds of linear models and
selection processes. And a mode of assessing the full model that has emerged from Bayesian scholars,
“inspection of the predictive posterior” has great utility for both Bayesian and frequentist approaches
which require DGP models and related parameterizations (See Gelman et al. (2004) and Box (1980)
for elaboration and explanation of these kinds of useful ideas for model checking and fit for Bayesian
models.)
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This paper proceeds by introducing a substantive political science problem which
might give pause to someone whose only tool is based on stories about how the out-
comes were produced. Then, using the example of an 8 city randomized study of
newspaper advertisements and turnout we delve into the details of randomization
inference and illustrate, in fact, how regression analysis can aid such inference with-
out requiring the kinds of commitments that usually burden analysts. Finally, we
show how this mode of inference allows analysts to make choices about regression
specifications before estimating treatment effects (in contrasts to extant approaches)

1.1 Example: Can newspaper advertisements enhance turnout in low salience elec-
tions? The case of the 8 City Newspapers Randomized Field Experiment.

In the days just before the November 2005 elections, C. Panagopoulos fielded an
experiment to assess the effects of non-partisan newspaper ads on turnout in low
salience elections. This was, to our knowledge, the first experiment to investigate the
impact of newspaper ads on turnout, and as a pilot study, it was small, involving only
eight cities, matched into pairs on the turnout in the previous election. 9 Within each
of the 4 pairs, one city was assigned at random to receive black-and-white newspaper
ads in local newspapers encouraging citizens to vote. Panagopoulos (2006) provides
more detail on the design of the experiment and detailed analysis of the conclusions.
Table 1 shows all of the observations in the study with associated design and outcome
features.

Turnout
City State Pair Treatment Baseline Outcome
Saginaw MI 1 0 17 16
Sioux City IA 1 1 21 22
Battle Creek MI 2 0 13 14
Midland MI 2 1 12 7
Oxford OH 3 0 26 23
Lowell MA 3 1 25 27
Yakima WA 4 0 48 58
Richland WA 4 1 41 61

Table 1: Design and outcomes in the Newspapers Experiment. Treatment with the newspaper
ads is coded as 1 and lack of treatment is coded as 0 in the ‘Treatment’ column.

We see here Saginaw (control) and Sioux City (treated) in one pair. Turnout in Sioux
City increased from before the treatment to after the treatment by 1 point (22 vs.
21) and was higher than its control unit (Saginaw) after treatment (22 vs. 16). In
addition, turnout in Saginaw (which was not exposed to the experimental newspaper
ads) decreased by 1 point (16 vs. 17) from the election before the treatment to the
election after the treatment. Those three different pieces of information suggest that

9About 281 cities with populations over 30,000 held a mayoral election in 2005. The Newspapers
study focused especially on the roughly 40 cities with indirect election of mayors (i.e. where mayors
are elected by city councils, not directly by the public). And, among these cities, only those cities
in which the city council had been unanimous in their election of the mayor in the previous election
were considered potential experimental units. After collection of covariates (such as vote turnout in
the previous municipal election and partisanship of the election) roughly 9 cities had complete data to
allow matching into pairs, and roughly 1 city was discarded as not easily matchable with any of the
others on the basis of turnout in the previous election. [These are rough numbers. Check.]
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the treatment had a positive effect on Sioux City. However, a thoughtful reader
will have, by now, realized that each of those three comparisons have some flaws:
something other than the treatment could have caused turnout to increase over time
in Sioux City, baseline turnout was higher in Sioux City than Saginaw, and it is
easy to wonder whether, in the absence of treatment, Sioux City would also have
had a slight decline in turnout in the same way that occured in Saginaw. In some
senses we might think that the simple control versus treated comparison of 22-16=6
percentage points of turnout would be the right estimate of a treatment effect for
Sioux City here. Yet, since Sioux City only increased by 1 percentage point from
baseline, we might wonder if somehow 6 pct pts overstates the effect. That is, in
this dataset, one challenge will be to use information other than mere assignment
to treatment and control to produce compelling estimates of treatment effects. This
study also is very small: there are only 8 cities grouped into 4 pairs. The small
sample size raises doubts about estimation strategies grounded in arguments about
consistency (of either points or intervals). The availability of baseline outcomes (as
well as other covariates) suggests that, since we know more about these units, we
should use this information to enhance the precision of our estimates if not also
the persuasiveness of our comparison. This example will allow a very clear and
easy exposition of randomization inference, and the complications regarding use of
baseline and covariate information offer an opportunity to show how randomization
inference allows for more than just simple comparisons of treated and control units.

1.2 Plan of the Paper

The paper shows how to estimate effects from these datasets without large-sample
assumptions, infinite population sampling models, or data generating process mod-
els. When we do introduce the convenience of large-sample approximations or the
precision enhancement arising from a model of outcomes, the statistical inference
will still be based entirely on the design of the studies.10 The linear models used
here will not require commitments to the standard assumptions of these models:
they will be used to reduce noise in the outcomes, not to directly estimate treatment
effects. The confidence intervals we produce will include hypotheses that reject a
true null no more than the pre-specified 1− α of the time: that is a 95% CI will be
guaranteed to contain the true estimate at least 95% of the time if the experimental
manipulation/policy intervention was re-assigned. In contrast, extant methods rely-
ing on large samples will produce confidence intervals labeled as, say, 95% CIs but
which will in fact contain the true estimate less often than specified (and less often is
as precise a statement as we can make about the failure of these large sample CIs to
have correct coverage without simulation). [simulations comparing coverage to add
empirical confirmation to this theoretical claim are planned but not completed]

First, we will demonstrate the most basic form of Fisher’s randomization inference
on the Newspapers study. Since that study is small, it allows us to lay bare the de-
tails of the method to (1) aid comprehension by newcomers and (2) contrast with
other modes of inference which would require many more pages and much more
background to fully describe. Once it is clear how the design of the study (the

10In this paper we use “model of outcomes” and “data generating process model” interchangeably.
Both imply a probability distribution governing the values of the outcome and some parametrization
of that distribution.
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randomization and, in this case, blocking into pairs) makes the statistical inference
meaningful and credible, we then explain some extensions to the basic framework
which enable the use of linear models to increase precision and adjust for random
imbalance. And finally, we show how power analyses of different linear model spec-
ifications can help analysts make choices about covariates (in addition to balance
assessments) while protecting themselves from charges of data snooping.

Notice that our proposals here are not meant to replace other justifications for statis-
tical inference. Nor do we think that in-sample inference is the end goal for scientific
inference [as opposed to statistical inference let alone causal inference]. If one knows
how the process understudy occurred, then there is no need for these techniques —
the scientific question becomes merely about calibrating the known data generating
process with the data in hand. Of course, if one is running a randomized experiment,
this often means that we know less about how nature or society produced the pro-
cess at hand, and, in such cases we hope that reminding political scientists of what
the originators of randomized experiments thought about statistical inference (and
updating and re-conceptualizing these thoughts for modern data analytic practices
and tools) will be useful.

2 The Newspapers Study

What is the effect of newspaper advertisements on aggregate vote turnout in the
Newspapers dataset (shown in Table 1)? By “effect” here we refer to a counterfactual
comparison. The advertisments can be said to have an effect if the turnout of cities
i treated with the advertisements (Z = 1), rZ=1,i, would have been different in the
absence of advertisements (Z = 0). We can write the potential outcome to control as
rZ=0,i or more simply r0i to denote the response of city i without advertisements, and
rZ=1,i ≡ r1i for the response of city treated with advertisements.11 By “causal effect”,
τ, we refer to a comparison of potential outcomes such as τi = r1i − r0i. Notice that
this framework is a conceptual heuristic: we cannot actually ever observe both r1i
and r0i.12 We could represent these potential outcomes in the Newspapers design as
follows in Table 2.

For example, we observe that turnout was 16% in Saginaw. We take this to mean
turnout in the absence of treatment (r0i) is 16% in Saginaw. We don’t know, without
further information and/or assumptions, how the turnout in Saginaw would have
been had Saginaw instead of Sioux City been exposed to newspapers advertisements
in the 2–3 days before the election. Clearly, the act of making causal inferences

11We can write r0i because we also assume that the potential turnout in city i is unaffected by treat-
ment to other cities. If the treatment giving to one city, j, influenced outcomes in another city i, , we
would have to define the potential response of city i to control in terms of both the treatment assigned
to it and also to city j: perhaps rZ={0,0},i where Z = {0, 0} would mean that both units received con-
trol rather than treatment. This assumption is reasonable in this dataset, but by no means is a trivial
assumption to maintain in many political science studies (Brady, 2008).

12The idea that one must compare possible outcomes, or “potential outcomes” to make causal effects
meaningful was introduced in the 1920s by Neyman (1990) and most prominently elaborated and de-
veloped by Rubin (1974, 2005). For more on the intellectual history of this idea and spirited arguments
in its favor see Holland (1986); Sekhon (2008). For commentary and criticism of the potential out-
comes framework (also often known as the Neyman-Rubin conceptualization of causal effects) (Brady,
2008). And also see Rosenbaum (1999) for practical strategies using this framework in the context of
observational studies.
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i bi Zi Ri r1i r0i
Saginaw 1 0 16 ? 16
Sioux City 1 1 22 22 ?
Battle Creek 2 0 14 ? 14
Midland 2 1 7 7 ?
Oxford 3 0 23 ? 23
Lowell 3 1 27 27 ?
Yakima 4 0 58 ? 58
Richland 4 1 61 61 ?

Table 2: Treatment (Z), Observed outcomes (R), and potential outcomes (r1, r0) for Cities (i)
within Blocked Pairs (bi) in the Newspapers Experiment.

requires replacing the “?”s in Table 2 with meaningful numbers. How can we get
them?

Let us recall our definition of a causal effect as a comparison of potential outcomes:
τi = r1i − r0i. If there were no effect for, say, Sioux City, τi=Sioux City = 0 implying
that r1,i=Sioux City = r0,i=Sioux City. That is, if there were no effect, turnout in Sioux
City without advertisements would be the same as turnout with advertisements.
We know that turnout in Sioux City in the presence of advertisements was 22%.
Thus, if advertisements had no effect on turnout, turnout in Sioux City in the control
condition would have had to be 22%. Notice that positing, or hypothesizing, that
treatment had no effect and then representing “no effect” in terms of our definition
of a causal effect allows us to fill in the missing data. This way of thinking about
what “no effect” means is very clear: “no effect” means that we would observe the
same outcomes for each unit regardless of experimental condition assigned. This
kind of hypothesis implies something specific about each and every unit in the data.
Often called a “sharp null hypothesis”, this idea and randomization-based causal
inferences based on them (but not on potential outcomes) was first proposed and
developed by in Fisher (1935).13

So, a strict null hypothesis of “no effect” implies that, for all i, r1i = r0i. If the hy-
pothesis were true, the missing potential outcomes in Table 2 would be known. Most
importantly, we would know the potential outcomes under control for the treated
observations. Combined with the observed outcomes for the control group, a given
sharp null hypothesis specifies how the outcomes would look in the absence of treat-
ment. Given a vector of potential outcomes in the absence of treatment generated by
a sharp null hypothesis, we can now generate a distribution representing the possible
treatment effects that could arise from the experiment even if there were no effect.
To do so, we will need (1) a test statistic summarizing the relationship between treat-
ment assignment and observed outcomes, and (2) a model of the design of the study
(i.e. a model of how treatment was assigned), and eventually, in order to calculate a
confidence interval (3) a model of the effects of the study.

13The example of the Lady Tasting Tea given in Fisher (1935, Chapter 2) is perhaps the most famous
application of the sharp null hypothesis and randomization inference. The Newspapers example used
here is more interesting in that it is not a toy example, has to do with voting turnout rather than
tea-tasting, and has other features (like stratified treatment assignment and a continuous outcome)
that make it a more useful example for political scientists. For more on the Lady Tasting Tea and its
usefulness as an example in comparative politics see Sekhon (2005). See also Agresti and Min (2005).
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2.1 Test statistics summarize treated-versus-control differences

Random assignment requires us to consider comparing cities i within pair b across
treatment assignment as the basis for our test statistic. We know that cities within
pairs received newspaper ads without regard to any other characteristic of those
cities. Thus, comparing 2005 turnout in cities receiving the newspapers (the treated
cities) to 2005 turnout in cities which did not have those particular newspapers ads
(the control cities) is, in expectation, a comparison that reflects only the manipulation
and not any other characteristic of the cities.

Write Rbi for the observed percent of registered voters who voted in 2005 in each city
i ∈ {1, 2} in pair b ∈ {1, 2, 3, 4}. The observed outcomes are a function of potential
outcomes: Rbi = Zbir1bi +(1−Zbi)r0bi. We use capital letters to refer to random quan-
tities and lowercase letters to refer to fixed quantities. In this experiment we know
that treatment was assigned at random, thus we know that Z is random. Potential
outcomes are assumed to be fixed characteristics of units which can be revealed by
the experiment. We can write a simple difference of mean turnout within pairs as:

t(Z, R)b =
∑i ZT

biRbi

∑i Zbi
− ∑i(1− ZT

bi)Rbi

∑i(1− Zbi)

=Mean Turnout Among Treated Cities in Pair b−
Mean Turnout Among Control Cities in Pair b.

(1)

And we can calculate the overall difference as the average of the within pair averages
from equation 1.

t(Z, R) =
∑B

b=1 t(Z, R)b

B
. (2)

The within-block formula written in equation 1 is generalizable to situations where
blocks contain more than one treated unit and/or more than one control unit. The
formula for calculating the overall effect as a weighted average of within-block av-
erages is not generalizable to different sized sets because it assumes that each block
ought to contribute equally to the overall average. When we have one treated and
one control unit per block, one could argue that each block contains the same amount
of information about the overall treatment effect as any other. When the block sizes
vary, then blocks with very lopsided treated-to-control ratios provide less informa-
tion than blocks with more equal ratios and weights ought to reflect this difference.14

A cleaner way to combine those formulas would be to use directly use vector notation
where Z collects the Zbi and R contains the Rbi , and the notation |Z|means the “size”
of Z or |Z| = ZT1:

14See Hansen and Bowers (2008a) for generalizations of these formulas to unequal sized blocks and
unequal sized clustered random assignment and for formal arguments about how to weight the contri-
butions from different blocks and clusters. See Imai (2008) for another randomization-based argument
in favor of weighting unequal sized blocks equally.
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t(Z, R) =
ZTR
|Z| −

(1− Z)TR
|(1− Z)| (3)

Applying equation 1 or 3 to the Newspapers dataset gives an average difference
of treated and control units within pairs in turnout after treatment of 1.5 percent-
age points. Is 1.5 percentage points a “real” result? Say, for the sake of argument,
that there were no effects of newspaper advertisements: how much more (or less)
plausible does this observed result make the that hypothesis? If we want to use
probability to answer this question, we would need to compare the fixed quantity
that we observe (t(Z, R) =1.5) to the distribution of such statistics defined by the
null hypothesis H0 : τi = 0.

2.2 Simple Inference for a Null of No Effect

The probability distribution we require represents the probability of observing all
of the possible outcomes of the experiment in the case that the treatment had no
effect. That is, it would tell us the probability of observing t(Z, R) = 0 percentage
points, and the probability of observing t(Z, R) = 1.5 percentage points (and any
other reasonable effect) under the hypothesis of no effects. So, first we need to know
the range of possible effects and then we need to assign some probability to each
of these effects. We will see here that the design of this experiment allows us to
accomplish both tasks with no other assumptions. We use this method (often called
a “permutation” method or an “enumeration” method) in this section of the paper
to show the simplicity of randomization based tests.

We begin with the task of delineating the domain of this distribution — the values of
the treatment effect for which we require probability statements. Here we have four
blocks, each with two units, and each with one and only one treated unit. So, within
block we have (2

1) = 2 ways to assign treatment. And across the four pairs, we have
∏4

s=1 (
2
1)s = 24 = 16 ways to assign treatment.15

Table 3 shows the 16 different ways to assign treatment to cities, respecting the block-
ing structure of the design. This matrix is often labeled Ω and it contains all of the
possible assignment vectors z of which Z is the one we observed. For example, the
first possible assignment vector z from the set of all possible such vectors Ω would
assign treatment to Saginaw but control to Sioux City, while the 2nd z would assign
control to Saginaw and treatment to Sioux City.

This table is the model of assignment of the study.16 For each z ∈ Ω in Table 3
we can calculate a test statistic t(Z, R|Z = z) representing the differences between
treated and control units for each of the possible ways that assignment to treatment
could have happened. If the sharp null hypothesis of no effect were true then r0 = r1
and then R = Zr1 + (1−Z)r0 = Zr0 + (1−Z)r0 = Zr0 + r0−Zr0 = r0. That is, if our
null were true, what we observe in R is what we would observe under the control

15Although we have eight units, four of which were treated, the number of possible assignments is
not (8

4) = 70 because of the blocking into pairs. In this way the Newspapers dataset is even a bit simpler
than the classic Lady Tasting Tea example.

16One could write this model more parsimoniously as is often done, or merely list all of the possible
ways for treatment to be assigned.
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city pair Z z ∈ Ω

Saginaw 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Sioux City 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Battle Creek 2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Midland 2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Oxford 3 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
Lowell 3 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Yakima 4 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Richland 4 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 3: Possible treatment assignments for the Newspapers study. Pairs of cities define the
columns. Permutations of the assignment mechanism (within pair fixed random assignment)
define the rows.

condition. Thus, the collection of t(Z, R|Z = z ∈ Ω) summarizes all of possible test
statistics if the null were true. Since we know the probability of seeing each z ∈ Ω,
we now have the distribution of the test statistic under the null hypothesis. In this
case, the probability of seeing each z happens to be uniform with probability 1/16.

Now we are ready to answer our question about how strange it would be observe a
mean difference as far away from 0 as 1.5 if, in fact, there were no effect. The proba-
bility of observing a result as large or larger than 1.5 is the sum of the probabilities
of at 1.5 and larger. The probability of observing a result as small or smaller than
-1.5 can be calculated in the same manner. And the two-sided p-value is the sum of

those calculations. The full probability distribution, −5 0 5 , is very sim-
ple: each vertical line represents the amount of probability for each possible outcome
— most of the mass is concentrated at 0, -1.5 and 1.5, with small amounts of mass
scattered across the line from -5 to 5. More detail is shown in Table 4.

t(Z, R) -5 -3.5 -3 -2 -1.5 -0.5 0 0.5 1.5 2 3 3.5 5
p(t(Z, R)) 0.06 0.06 0.06 0.06 0.12 0.06 0.12 0.06 0.12 0.06 0.06 0.06 0.06

Table 4: Randomization based probability distribution of paired mean treatment–control dif-
ferences) under the sharp null hypothesis of no effect.

A common two-sided p-value is defined as the sum of the absolute value of the mass
at or greater than the observed value.17 In this case the there are 12 ways out of 16 to
observe a value as far from zero as 1.5 (or -1.5). Thus, the weight of evidence that our
observed value of 1.5 places against H0 : τ = 0 is summarized by p = 12/16 =0.75.

Other test statistics Notice that nothing about this procedure requires a comparison
of simple means. We could produce the same result with a standardized version
(i.e. the test statistic of the simple t-test). Or we could use a sum of ranks among the

17Another common definition is twice the one-sided p-value for test statistics with only positive
domains (like ranks) or twice the smaller of the two one-sided p-values for asymetric randomization
distributions which is equivalent the sum of the absolute value of the mass at or greater than the
observed value in symmetric distributions. See Rosenbaum (2010, page 33) and Cox et al. (1977) for
arguments in justifying twice the minimum of the two one-sided p-values.
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treated: For example, if q = rank(R), then we could define the rank sum test statistic:
t(Z, q) = qTZ. Notice that since the ranks are a function of observed responses, they
are also functions of potential outcomes. Different test statistics might have different
statistical power or might otherwise summarize results in more or less substantively
meaningful ways.18 Lehmann (1998) and Keele et al. (2008) among others suggests
rank based tests for their insensitivity to outliers and enhanced power compared to
mean-based tests. Table 5 shows the distribution of the paired-rank sum test statistic
under the sharp null hypothesis of no effect. The observed rank sum is 6, and the
two-sided p-value is 2 × 0.4375=0.875. Since rank sums are always positive, the two-
sided p-value must be defined as twice the one-sided p-value rather than using the
absolute values of the domain of the randomization distribution.

t(Z, R) 0 1 2 3 4 5 6 7 8 9 10
p(t(Z, q)) 0.06 0.06 0.06 0.12 0.12 0.12 0.12 0.12 0.06 0.06 0.06

Table 5: Randomization based probability distribution of the paired rank sum test statistic
under the sharp null hypothesis of no effect.

2.3 Summary of the Test of the Sharp Null of No Effects

Specify a hypothesis about τ H0 : τ = τ0, where τ is some function of potential
outcomes to control r0i or treatment r1i.

Specify a test statistic t(Z, R). For example, if q = rank(R), then qTZ (rank sum). Or
ZTR
ZT1 −

(1−Z)TR
(1−Z)T1 (diff of means).19

Compute the test statistic as implied by H0 t(Z, R− τ0Z). Under the sharp null of no
effect R = r0.

Compare t(Z, R) to t(z, R) for all possible z ∈ Ω Equation 4 summarizes the doubt
cast by our observed test statistic against the null hypothesis:

Pr(t(z, R) ≥ t(Z, R)|τ = τ0) =
∑z∈Ω 1{t(z, R) ≥ t(Z, R)}

K
(4)

where Ω is the matrix of all possible treatment assignments, and K is the total number
of possible assignments in Ω, in the case of independent assignment across strata,
K = ∏b (

nb

∑
nb
i Zi

). In our case K = ∏4
s=1 2 = (2)4 = 16.

Notice that this test did not require any model about how turnout occurs in cities, nor
did it require assumptions about large sample sizes, or any particular functional form
relating assignments and outcome (recall that the test of the sharp null is represented
by the same pattern of r0 regardless of model of effects). The mechanism by which
the p-values were produced is completely transparent (especially so in the case with
K = 16!).

18For example, Hansen and Bowers (2009) used “number of votes” rather than “probability of voting”.
19Here I have used paired versions of these test statistics because of the random assignment within

pairs. I am using matrix notation R rather than Rbi for clarity on the page.
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Yet, we are left with some discomfort: First, political science actually knows some-
thing about turnout. That is, although precise models of outcomes may be a burden
(and more of a burden with outcomes like the Adverse Events data), we would like
to use what we know. We will show later how models of outcomes may be used
within this framework without requiring inference itself to be based on models of
the data generating process. Second, knowing that the null of no effect is not im-
plausible is not the same as producing a range of values that are plausible. We will
next demonstrate how such tests as we have executed here may be “inverted” (cite
to page in Lehman among many other books) to estimate a range of plausible values
for the effect of newspaper advertisements on vote turnout.

2.4 Confidence Interval: Assessing Hypotheses about effects

So far we have assessed a hypothesis about no effects. If we want to talk about
plausible effects, we must assess hypotheses about some non-zero effects. Recall that
a confidence interval is defined as the range of hypotheses that would be accepted at
some α level denoting the risk of falsely rejecting a true hypothesis. That is, given
a choice of acceptable Type-I error rate, one can create a confidence interval out of
hypothesis tests. This method, called “inverting a hypothesis test” is a well known
procedure and is not specific to randomization inference [cite a couple of textbooks
like Rice (1995) or others perhaps Hodges and Lehmann (1964)?]. For example, we
have so far assessed H0 : τ = τ0, τ0 = 0 and have p-values of 0.75 and 0.875 for the
mean and rank-based test statistics respectively. Regardless of test statistic, τ0 = 0
must be within any reasonable confidence interval (say, of α = .025 for a 95% CI
let alone α = .12 for a 88% CI). That is, τ0 = 0 is a plausible value for the effect of
advertisements on turnout. What about other values?

In order to assess hypothesis about other values we must now add some structure to
the problem. Namely we must posit a model of effects. First, we’ll explain what we
mean by model of effects, and second demonstrate how such a model allows us to
assess hypothesis about effects and thereby to produce a confidence interval.

2.4.1 Models of Effects

For the rest of this paper we will be working with a very simple model of effects,
namely the constant, additive effect model:

τ = r1i − r0i (5)

which implies that r1i = r0i + τ: meaning, the potential outcomes under treatment
are merely the potential outcomes under control plus some constant τ which is the
same for all cities. I make this assumption both for convenience and also to make
these analyses parallel those that others might do using models of outcomes (e.g.
linear model based analyses which wrap models of effects into models of outcomes).
There is nothing about this mode of inference, however, that requires such a model
of effects.

Recall our notation:

Treatment Zib ∈ {0, 1} for unit i in strata/block/pair b. Z collects all of Zib.
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Observed Outcomes Rib = Zibr1ib + (1− Zib)r0ib are a function of random assign-
ment and fixed potential outcomes.

Covariates x is a matrix of fixed covariates (variables uninfluenced by treatment).
Strata indicators (b = 1 . . . B) are covariates.

Recall also that we define a treatment effect as a function of potential outcomes. Here
are merely a few of the possible models of treatment effects that one may use.20

Constant, additive effects r1ib = r0ib + τ (like t-tests — very common, implied by
most linear model based analyses)

Varying, additive effects r1ib = r0ib + τib (especially useful for binary outcomes (Hansen
and Bowers, 2009; Rosenbaum, 2002a, 2001, See, e.g.))

Effect proportional to dose r1ib = r0ib + β(d1ib − d0ib) (Z changes D — instrumental
variables based approaches imply this model. Hansen and Bowers (2009); Bow-
ers and Hansen (2006) combine this model with the model of varying, additive
effects.)

Dilated effects r1ib = r0ib + δ(r0ib) (Effect of the treatment larger among those with
larger r0ib)

Displacement effects r1ib > θ > r0ib where θ is some value of the order statistics of
rCib. (the effect of the treatment strongest/evident at the 80th percentile).

Recall that to test the sharp null of no effects, no particular model of effects is re-
quired. It turns out that the sharp null of no effects implies the same pattern of r0i
for all such models of effects. However, to test hypotheses about effects (which is re-
quired to produce confidence intervals), a model of effects is necessary and different
models will have different confidence intervals. In fact rejection of a null hypothesis
could either be said to tell us something about the particular value of τ posited or
that our model of effects is wrong (Rubin, 1991, § 4.1)

Consider H0 : τ = τ0 to generalize from the simple hypothesis of no effect. If
τ = τ0 and assuming a model of constant, additive effects from equation 5 where
rTsi = rCsi + τ0, then:

Rbi = Zbir1bi + (1− Zbi)r0bi

= Zbir0bi + Zbiτ + r0bi − Zbir0bi

= r0bi + Zbiτ0 (6)
r0bi = Rbi − Zbiτ0 (7)

So, our null hypothesis again tells us what our potential outcomes would be as a
function of the hypothesis, assignment, and observed outcomes. But this time rather
than showing that H0 : τ = τ0 ⇒ Rib = r0ib our model of effects means that
H0 : τ = τ0 ⇒ Rib = r0ib + Zbiτ0. Notice that the test of a constant additive effect

20Rosenbaum (2002c, Chapter 5) elaborates these models of effects among others. [ToDo: Find articles
which apply each one of these models.]
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of 0 and as a test of the varying additive effect of τ0i = 0 imply the same pattern of
potential outcomes and observed outcomes if τ0 = τ0i = 0

Now consider a model of effects in which each unit may have a different effect but
the effect is still additive: rTsi = rCsi + τi. Now, H0 : τi = τ0i and since a hypothesis
must specify a pattern of responses across all units, we state H0 as a comparison of
N× 1 vectors: H0 : τ = τ0 where τ0 contains a pattern of τ0i which may differ across
the units of the study. For a null of no effect H0 : τ = τ0 = 0. However, any τ0
is testable by forming the hypothesized rC = R − Zτ0 and using t(Z, R − Zτ0) as
the test statistic to summarize the comparisons of potential outcomes under the null.
In this case of varying effects, the posited model of effects also restricts the range
of possible τ0. For example, if we assume a simple model of effects rTsi ≥ rCsi, we
would not consider hypotheses which would contradict this statement. For these rest
of this paper, we use a model of constant, additive effects so as to make what we are
doing here as similar to the the common practice of estimating “average treatment
effects” as possible.

2.4.2 A Confidence Interval by Inverting A Set of Hypotheses

The logic of § 2.2 can apply directly here. Now the test statistic is t(Z, R − Zτ0)
rather than t(Z, R), but Table 2 still represents the ways that the experiment could
have occurred. Thus, for a given hypothesized value of τ, τ0 where the “0” stands
for null hypothesis, we can calculate t(z, R− zτ0) for all of the z ∈ Ω and refer to
equation 4 for a p-value to summarize the implausibility of this τ0. If the p-value is
greater than or equal to our α value, τ0 is inside the CI, otherwise it is excluded from
the CI as implausible.

Say we want to test H0 : τ = 1. Our model of effects and the logic of equation 7
says that, if our null hypothesis were true, potential outcomes to control among the
treated would be potential outcomes to treatment minus τ0 = 1: r0bi = Rbi − Zbiτ0.
This operation of removing the hypothesized effect from the treated group is the
second addition to the simple test of the sharp null of no effects. However, once
we have specified a model of effects and adjusted outcomes according to a given
hypothesis, we can evaluate the evidence against this hypothesis using the same
procedure as above: for each of the possible z ∈ Ω calculate the test statistic, now
using the adjusted outcomes, t(z, R− zτ0), and refer to equation 4 for a p-value.

Using the paired Wilcox rank sum statistic and applying it to all 16 of the z ∈ Ω we
discovered that τ0 ∈ {−7, 6} formed the boundaries of a confidence set within which
the two-sided p-values were all greater than or equal to .25 and outside of which the
p-values were smaller than or equal to .125 — an 88 % CI (recall that a 100(1− α) CI
contains hypotheses not-rejected at level α and excludes hypotheses rejected at level
α or less). A 66% CI (which approximates ± 1 standard error for Normal variates) is
[-2,5] percentage points of turnout change. We can not calculate a 95% CI from these
data because the atom of the probability distribution is of size 1/16: we could, in
principle have a 100(1− (1/16)) ≈ 94% one-sided CI but in practice such a CI would
be incredibly wide.

We could produce a point estimate by shrinking this confidence interval.21 Yet, for

21This is a very informal way of talking about what is called a Hodges-Lehmann point estimate
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this application, the confidence intervals themselves summarize the evidence ade-
quately. The plausible effects of newspaper advertisements on turnout in these 8
cities ranges from -7 percentage points of turnout to 6 percentage points of turnout.22

2.4.3 Fundamental Assumptions, Discreteness, Flexible Hypothesis Testing, and Simple
DGP-Based CIs

This section includes some discussions which might well end up as footnotes, but
which we thought might deserve more space in this working paper.

Fundamental Assumptions: Comparability and Non-interference In producing these con-
fidence intervals we added a model of effects to our story about random assignment.
It turns out the random assignment story implies a particular, and more general as-
sumption that is required for causal inference and there is another general assump-
tion that we also justify by appealing to the design, without which we would not be
able to conceive of let alone estimate effects as we have done.

What do we know with confidence about this design? We know that treatment was
randomly assigned within pair. We know that treatment was assigned in such a way
as to prevent advertisements given to one city to have any effect on the turnout of any
other city (within or across pairs). We know that each city had some probability of
receiving the treatment before it was actually assigned, and that assignment was gov-
erned only by a random number generator, and thus not related to any other feature,
observed, or unobserved, of the cities. These sentences paraphrase two of the tech-
nical requirements for filling in the missing data in Table 2 on page 6 by any method.
These requirements are often known as “ignorability” and “non-interference”; “non-
interference” is itself related to a broader set of assumptions collectively known as
the “stable unit value assumption” or SUTVA. [cites on ignorability and SUTVA from
Brady, Sekhon, Rubin and Rosenbaum].

The ignorability assumption is important for everything we have done so far. In
this particular case, the ignorability assumption amounts to us believing that, within
matched pair, each city had an equal probability of receiving the treatment. Thus, any
other differences between cities will merely add the same constant to each spike in the
randomization distribution and will not change our p-values. If we are wrong about
this assumption, then our randomization distribution will not reflect the posited null
hypothesis, and it will be hard to know what our p-values mean.

The non-interference part of the SUTVA assumption is important for the confidence
intervals but not for testing the sharp null of no effects (Rosenbaum, 2007). This
assumption does allow us to write r1i (potential outcome to treatment for unit i)
versus r11111111,i or r11111110,i (potential outcome to treatment for unit i given some
combination of treatment assignment in the rest of the study). That is, we can define
models of effects by writing simple functions of r1i, r0,i, Z because we have assumed
that the potential outcomes of each unit are independent of each other.

(Hodges and Lehmann, 1963; Rosenbaum, 1993).
22Evaluating t(Z, rank(R− τ0Z)) for each of the 16 z ∈ Ω is, in fact, not necessary. One can produce a

1− α confidence interval using the paired rank sum test with one command in R (R Development Core
Team, 2009): if Rb = Rib − Rjb, i 6= j (i.e the responses within pair are summarized by their differences),
then wilcox.test(R,alternative="two.sided",conf.int=TRUE,conf.level=.88) produces an 88%
confidence interval that is the same as the one arrived at above by direct enumeration.
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Discreteness of Enumerated CIs Above we defined the 88% CI as [−7, 6] but also noted
that the boundary p-values inside the interval were .25 and those right outside the
interval were .125. In most large sample hypothesis testing regimes, the p-value just
inside the boundary of the interval are only a tiny bit larger than those outside it. In
this case, our 88% CI actually could encompass an 80% CI or even a 75+ε % CI (where
ε means “just a little bit”) since the p-values we observe just inside the boundary are
.25. Notice one feature of confidence intervals created using randomization inference
on display here: The probability that a confidence interval constructed in this way
contains the true value of τ is at least 1-α (Rosenbaum, 2002c, page 45). In this
way, confidence intervals created using randomization inference are guaranteed to
have correct coverage, and will be conservative if their significance level (88% or
α = (1/8)) is not exactly the same as their size. Rosenbaum (2002c, Chapter 2) also
proves that these intervals are unbiased and consistent (such that more information
is better — produces smaller intervals).

Composite Confidence Intervals Although we have created confidence intervals by
testing null hypotheses, we have not discussed alternative hypotheses. Yet, we know
that specification of the alternative hypothesis will matter a great deal for the ability
of a given test to reject the null. A two-sided alternative of τ 6= τ0 requires twice as
much evidence against the null to reject it as a one-sided alternative such as τ > τ0.

Since we create the confidence intervals by testing many hypotheses, we have many
opportunities to reject or not-reject. So far, we have compared every null against
the two-sided alternative. This alternative makes sense especially for the sharp null
of no effects: The null of τ0 = 0 could imply no extant guesses about τ (and thus
HA : τ 6= τ0). Yet, testing for effects implies that we are willing to consider non-zero
values for τ — at least provisionally. If we posit a negative value, say, τ0 = −1, then
what is the alternative? It could still be τ 6= τ0, but, notice that we already know
(from our first test of no effects) that τ could be 0, and thus we have a sense that
τ > −1. Entertaining τ0 = −1 after having tested τ0 = 0 implies that we are not
really interested in the two-sided alternative, but in the one-sided alternative that
τ < τ0. A similar logic can apply to a hypothesis of τ0 = 1 (i.e. that this null can
be thought of as really implying an alternative of τ > τ0.) A confidence interval
for τ = r1 − r0 could thus be constructed as a two-sided interval for nulls where
τ0 = 0 and two one-sided interval for nulls where τ0 6= 0. Notice, this proposal
involves specifying the set of alternatives at the same time as specifying the set of
nulls — the alternatives would be defined only by the nulls, not by the data. Most
analytic constructions of confidence intervals do not have any easy way to stitch
together a confidence interval out of independent parts in this way. Rosenbaum
(2008) provides more general theory that encompasses the simple example described
above. In this section of the paper, we will continue to build two-sided confidence
intervals, although we could make smaller confidence intervals using the approach
outlined here; confidence intervals that would have the same operating characteristics
of the simpler intervals.

WWLRD (What would linear regression do?) A t-test from a linear regression with
dummy variables representing pairs in this case report a 95% CI of [-7.73,10.73]. Ig-
noring the paired structure of the data yields [-36.05,39.05]. Both of these tests require
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either large samples of independent, homoskedastic observations or an assumption
about an independent, homoskedastic, Normal data-generating process. Freedman
(2008a) points out that, even in large samples, or even if the Normal DGP is roughly
correct, treatment and control groups almost always have different variation on the
outcome variable and thus linear regression in the case of randomized experiments
does not produce correct confidence intervals. Green (2009) suggests that Freedman’s
concerns may have little effect on much of common large-sample and/or DGP model-
based analysis of political science experiments.23 What we have shown in this paper
so far is that a DGP process model is not necessary for statistical inference from an
experiment. What Freedman (2008a); Green (2009); Schochet (2009) teach us is that
statistical inference for treatment effects from linear regression is meaningful as an
approximation to the randomization-based results — and that this approximation is
often quite good. Of course, one may also claim that one knows that a Normal pro-
cess (say, many small independent counter-acting perturbations summing) produces
the outcomes of ones experiment, or that one has sampled from a real population in
some known manner. And in those cases, the theoretical basis for the statistical infer-
ence can rest on a combination of justifications (randomized experimental treatments
within a randomly sampled set of units from a population known to be generated by
a Normal process).24

Ought one to prefer a DGP process model when analyzing the results of an exper-
iment? We have shown that it is unnecessary althought it may be a useful approx-
imation. It is also worth noting here it has long been known that that the validity
of a DGP process model also depends on the validity of an assignment model [cite
to Heckman, Achen, Rubin]. Thus, adding a DGP model to the analysis of an ex-
periment does not imply that one can therefore spend less time on the model of
assignment.

2.5 Bringing the DGP back in: Model-assisted, Randomization-justified Inference

Yet, we must recall that political scientists are not ignorant about turnout. That is,
although the DGP ought to seem like a burden, and the clarity and simplicity of the
randomization-based interval ought to appeal, knowledge of outcomes ought to help
us somehow. More information should be better. The only question is how to use
the additional information while maintaining our focus on models of assignment as
the basis for statistical inference.

We introduced the rank-based transformation of R above for three reasons: First, we
noted that rank-based tests tend to have more power than mean-based tests with non-
normal outcomes. Second, we wanted to depart from the common use of “average
treatment effects” in the causal inference literature — not because such usage is a
problem, but, to show that the average is merely one possible summary of effect and
thus, we hope, expanding the possibilities for applied analysts.25 Third, we wanted

23Schochet (2009) finds similar results in the context of public policy evaluations.
24The only mode of inference that I can think of which actually (and easily) can handle such a

combination of claims is Bayesian inference. See for example, Barnard et al. (2003); Horiuchi et al.
(2007) in which models of outcomes, of missingness in outcomes, of compliance, and of assignment are
combined in the analysis of field experiments.

25For those readers in the know, this paper is not a Fisherian manifesto contra Neyman. However,
we are taking a Fisherian line here because we feel it is (a) particularly clear and (b) allows the Neyman
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to plant the idea that one could be creative about test statistics to foreshadow this
section.

Recall that the procedure for randomization inference depends testing hypotheses
about potential outcomes and a model of effects. Together, H0 : τ = τ0 and τ0 =
r1 − r0 imply a particular pattern of r0 that we can observe by adjusting observed
responses such that r0 = R− τ0Z. We want to know something about t(Z, r0) and
the hypothesis and the model of effects provides t(Z, R − τ0Z) = t(Z, r0) since we
cannot observe r0 for all cities directly. The variance in the distribution of t(Z, r0)
depends in part on differences in potential outcomes given different treatment as-
signments (i.e. a difference between treated and control subjects) but part of this
variation within treated and control observations is due to covariates (observed or
unobserved). Noisy outcomes will make it harder to distguish control from treated
observations. Imagine that we could regress r0 on some set of covariates on the ma-
trix x but not Z; say these covariates are known from previous literature to predict
aggregate turnout. The residuals from such a regression, e, should be less variable
than r0 and uncorrelated with x (meaning that a regression of e on x would produce
an R2 ≈ 0.) Such a regression does not involve looking at effects of treatment, thus,
protecting our inferences from concerns about data mining. But such a regression is
impossible since we do not observe r0 for cities were Z = 1.

Of course, the same logic of replacing r0 with R− τ0Z can be used to test a hypothesis
about a particular configuration of potential responses to control. Rosenbaum (2002b,
§4) shows us that we can define a “residual producing function” or perhaps a “de-
noising function” (our terms, his idea) ε̃(r0, x) = e and, given some model of effects,
one can test hypotheses H0 : τ = τ0 using t(Z, e). To summarize, a linear model can
aid the production of randomization justified confidence intervals via the following
steps:

Define a function to produce residuals ε̃(r0, x) = e. This could be OLS, influential
point resistent regression, or a smoother. The residuals, e will be calculated
from fixed quantities r0 and x and so will be fixed.

Compute adjusted outcomes based on a H0 : τ = τ0 Since r0 = r1 − τ, we can cal-
culate e0 = ε̃(R− τ0Z, x) where x is a matrix of covariates predicting R.

Compute t(Z, e0) and compare to t(z, e0; z ∈ Ω) p-values and CIs follow directly.

Although the step of using a model of outcomes to enhance the randomization in-
ference does add more stories that require their own justification, the process of
justification ought to be less burdensome than it would otherwise be if the inference
itself were based on a DGP model. First, notice that one would not make this step to
using a model of outcomes if one did not know something about the outcomes. That
is, in the absence of knowledge about outcomes, the confidence intervals already
produced suffice.

Second, this outcome model is meant only to reduce noise in the outcomes. A cor-

work emphasizing average effects to be understood and broadened: For example, Hansen and Bowers
(2009) show a Neyman-style approach to estimating causal effects using a test statistic that is not a
constant average effect and that is defined from a Fisherian point of view. [cite to pages in Lehmann and
Cox showing that Neyman and Fisher are both doing pretty much the same randomization inference.]
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rect specification is not required. Incorrect specifications will add noise and will thus
make the CI wider but will not change the coverage of the CI. We emphasized ε̃(r0, x)
above — a noise-reduction or residual-producing function — rather than R = xβ in
part because we never need to examine the coefficients let alone assess uncertainty
about them in this model. Recall that the only source of randomness in this frame-
work about which we have confidence is Z, and ε̃(r0, x) does not include Z. Thus, it
has the status of a smoother or other data summary/description, not of a model of
a data generating process. Thus, there is less to justify from the perspecitive of the
technical features of the model. This is not to say that one must not be thoughtful in
choosing such a model — a bad choice could inflate the confidence interval.26

Figure 1 shows the 88% CIs that arise from different covariance adjustment specifi-
cations. Each confidence interval is labeled with the linear model formula from our
noise-reduction function, and the intervals are plotted in order of width (widest on
top, narrowest on bottom). We also include three models which use draws from the
normal distribution as covariates — i.e. merely including noise as a covariate. The
confidence interval without covariance adjustment [-6–7] is labeled r0 — it is the 4th
line from the top of the plot. The top two lines represent the 88% confidence intervals
from the two noisiest noise models (one with a draw from a N(10,5) and the other
with a draw from N(0,5)). In fact, these two intervals are truncated — we did not test
hypotheses beyond -10, 10. So, adding noise expands the intervals.

Conversely, covariates which predict the outcome reduces the interval: the bottom
line is an 88% CI running from -1 to 5 percentage points of turnout after removing
the linear and additive relationships between median age and percent black (both
2000 census figures for the cities) and post-treatment turnout. We will return to the
question about how to choose a covariance adjustment specification in § 2.6.

Covariance Adjustment for Imbalance Recall that we worried in § 1.1 about about the
fact that, within matched set, previous turnout was not exactly same between the
two cities — and that, perhaps simple treatment-minus-control differences might
overstate the treatment effect. One could also a define a test statistic which would
remove the effect of baseline turnout from post-treatment turnout. For example,
Table 6 replicates and extends Table 1 including data on other covariates. We might
calculate the treatment effect for Sioux City of 22-16=6 given the comparison city of
Saginaw. Of that 6, however, one might imagine that at least 4 points of that are due
to the baseline difference in turnout between the cities, and so the “true” treatment
effect ought to be 6-4=2. Thus, one could imagine a simple generalization of our
mean differences test statistic (equation 1) which would write the baseline-adjusted
effect for pair b using rpre to mean baseline turnout as:

26What if we did have good information about the prior distributions of β from ε̃() and/or we knew
how the units were sampled from a larger, well-defined population (or we knew the DGP)? Perhaps
then we could imagine a posterior distribution of E (no longer lowercase) which would itself generate
a distribution over the CIs and allow for the kinds of model comparisons at which Bayesian methods
often excel.
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Figure 1: 88% Confidence Intervals for effects of Newspapers advertisements on Turnount
(Percentage Points of Turnout). All models run with pair-aligned data [i.e. treated-control
outcomes and covariates] (equiv. fixed effects for pair). Here ε̃(r0, x) uses OLS. Turnout in
the previous election is labeled r0 t−1. Covariates “hhinc”=“Household Income” and “age”
are median 2000 census figures for the city, “% blk” is percent black as of 2000 census. Noise
only models have covariates labeled “rnorm” and represent random draws from Normal
distributions N(0,1), N(0,5) and N(10,5). The 88% CIs for the N(0,5) and N(10,5) noise models
are wider than -10 to 10 but are truncated here.

t(Z, R, rpre)b =

(
∑i ZT

biRbi

∑i Zbi
− ∑i(1− ZT

bi)Rbi

∑i(1− Zbi)

)
−
(

∑i ZT
birpre,b,i

∑i Zbi
− ∑i(1− ZT

bi)rpre,bi

∑i(1− Zbi)

)
=Mean Treated–Control Post-Treatment Turnout Difference in Pair b−

Mean Treated–Control Baseline Turnout in Pair b.
(8)

For those comfortable with linear models for estimating effects, equation 8 represents
a change score or “gain score” model (i.e. Rt − Rt−1 = β0 + β1Z); a model which is
equivalent to Rt = β0 + β1Z + Rt−1.27 And it is common to re-express such models

27Another strategy to account for these baseline differences would be to use percentage change as
the test statistic. Consider the Sioux City versus Saginaw pair: our current adjustment would calculate
(22-16) - (21-17)= (22-21)-(16-17)=2 as the adjusted effect. We could also use percentage changes: for
example, if a treated city had a turnout of 2 at baseline but a turnout of 4 after treatment we might
say that turnout doubled, or that the percentage change was 4/2=200%. So, in our case we would
have (22/21) - (16/17) = .1 or a positive change from baseline of 10%. I don’t pursue this strategy here
because it is harder to decode, for example: 10% change in this case is the same as an adjusted turnout
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Turnout
City State Pair Treatment Baseline Outcome % Black Median Age Median HH Income
Saginaw MI 1 0 17 16 43 31 26
Sioux City IA 1 1 21 22 2 33 37
Battle Creek MI 2 0 13 14 18 35 35
Midland MI 2 1 12 7 2 36 48
Oxford OH 3 0 26 23 4 21 25
Lowell MA 3 1 25 27 4 31 39
Yakima WA 4 0 48 58 2 31 29
Richland WA 4 1 41 61 1 38 53

Table 6: Design,covariates and outcomes in the Newspapers Experiment. Treatment with the
newspaper ads is coded as 1 and lack of treatment is coded as 0 in the ‘Treatment’ column. %
Black, Median Age, and Median HouseHold Income(1000s) from the 2000 Census. Numbers
are rounded integers.

without requiring that the baseline outcome enter with a fixed coefficient of 1 so that
we might write Rt = β0 + β1Z + β2Rt−1. The lines in Figure 1 with the covariate r0 t−1
reflect exactly this kind of baseline adjustment — only without basing inference for
the effect of treatment on post-treatment outcomes on the β1 in a linear model.

Notice also in Table 6 that other covariates display some imbalance: especially notice
that the percent black in the treated city is higher than the percent black in the control
city in each pair and that the median household income displays the same pattern.
Such a patterns might make us worry about the randomization procedure applied
here. It turns out that one can use exactly the same procedures shown earlier to test
the sharp null hypothesis of no relationship between percent black and treatment
assignment. The p-value for this test is .125: the null of no effect would fall just
outside an 88% confidence interval as implausible (the 88% CI based on the same
exact rank-based test as used here runs from -41.9 to -.1 for % black and from 10 to
24 for median household income measured in $1000. ). What this really means is
that differences in black percent or median income are not large enough individually
to greatly confuse confidence intervals based on treatment assignment.28 Yet, the
relationship between treatment and percent black, for example, and turnout is strong
enough to cause adjustment for it to be even more powerful a precision enhancement
than adjustment for baseline outcomes. In general, this framework for statistical
inference can be used for placebo tests or randomization procedure assessments just
as it can be used to produce plausible ranges of treatment effects [cite to Abadie and
Sekhon and Titiunik on placebo tests]

Did newspaper advertisements matter for vote turnout in the cities studied? The
narrowest range of plausible values — created using a composite interval following
§ 2.4.3 — yielded a plausible range of effects of [-1,4]. The two-sided 88% interval

change of 2 percentage points — which is the more substantively meaningful metric in any case.
28 Hansen and Bowers (2008b) develop a randomization-based test for the hypothesis that some linear

combination of multiple variables are related to treatment: in this case, this would allow us to test the
hypothesis that, even if we can detect no random imbalance on % black and median household income
one at time, the experiment might have random imbalance on them jointly. An equivalent small sample
test using simulation rather than enumeration (Hothorn et al., 2008) produced a p-value of .13 for this
omnibus null hypothesis.
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ranged from -1 to 5.29

Some Limitations of Rosenbaum Style Covariance Adjustment Notice that we cannot
include all of our covariates in this model: after accounting for pairs we have at
most 3 degrees of freedom. And using all 3 reduces the variability in the residuals to
nearly zero — thus making the null of no differences between treated and controls
on the residuals always very plausible. That is, we speculate that, in this small
experiment, part of the variance in the outcome that is being removed as extraneous
to the treatment effect is in fact related to the treatment effect — and that, in the
extreme, one can remove so much noise from the outcomes as to make any differences
between treated and control disappear. Thus, we do not adjust for baseline-outcomes
and % black and median age, but only for subsets of 2 of these variables at a time
here.

In his article introducing these ideas, Rosenbaum (2002b), eschews OLS and instead
uses Huber and Ronchetti (2009)’s robust regression to down-weight high leverage
observations. The Newspapers study does not display particularly high leverage
points in any of the regressions run above, thus, when we replicated the OLS models
using the M-estimator, we saw no changes. 30

The potential for covariance adjustment to overfit the data and the potential for a few
observations to unduly influence the fit suggest some limits to the application of this
approach to small datasets like the one used here. The imbalance on some of the
covariates was adjustable, but the adjustment also caused the CIs to “bounce” or not
to remain exactly centered over the same central range of values. Yet, the imbalance
was not severe enough (and the information in the data was small enough) such that
the narrower plausible ranges of treatment effects tended to also to be plausible in
the lights of the wider intervals.

These limitations do suggest some avenues for elaboration and extension of these
procedures. Bayesian covariance adjustment would answer many of the concerns
about overfitting and might allow more substantive information to be brought to
bear on the problems of influential points.31

2.6 Power Analyses Allow Choice of Covariance Adjustment Model

Rosenbaum reminds us that:

Although randomization inference using the responses themselves and
ignoring the covariates yields tests with the correct level and confidence
intervals with the correct coverage rate, more precise inference might have

29These intervals were actually tested with hypotheses ranging from -10 to 10 in intervals of .1 but
the results reported here are rounded to integers for ease of reading. The actual ranges were: two-sided
interval = [-.8, 5.1], composite interval=[-.7, 3.7].

30We use the term “leverage” here to refer to the fact that we are worried about observations that are
very different from others on the scale of the covariates, not necessarily highly “influential” observations
which also might have a large effect β on a linear model. When we replicated our analyses we followed
Rosenbaum (2002b, § 2.4) in using Huber’s M-estimator as implemented in the rlm function packaged
with R.

31For binary outcomes, see especially the promising ideas in (Gelman et al., 2008) or alternatively the
frequentist development of shrinkage models as described Zorn (2005).
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been possible if the variation in fitted values had been removed. (Rosen-
baum, 2002b, page 290)

We have shown how to make our inference more precise using substantive knowl-
edge. Although, in exchange for methodological discussion, we did not carefully
argue for our covariance adjustment model using substantive knowledge here. And,
we displayed a variety of such models to illustrate how the confidence intervals re-
act to such adjustment, whereas a substantive analyst would, presumeably just show
one such interval in addition to the simpler, unadjusted interval. But, how should
he choose one (or few) covariance adjustment specifications among the many? Run-
ning many many different linear models searching for the one which provides the
lowest p-value on the treatment effect is not the way to go. [more on multiple testing
problems and relatedly discretion]

Even in this small dataset, there are many possible ways to increase precision by co-
variance adjustment, and if there is random imbalance, such adjustment may actually
shift the center of the interval. Here we propose and demonstrate a principled way to
choose among covariance adjustment specifications on the basis of statistical power.
Recall that from the perspective used so far we assess treatment effects using linear
models merely to transform our response (a residual is just a transformed response).
It is well known that different functions of the response may have more or less power
to detect treatment effects under different data configurations. For example, when R
is approximately Normal, tests using means tend to offer tighter confidence intervals
than tests using ranks, conversely, when R has long tails, is skewed, or otherwise has
large outliers, then tests using ranks out-perform tests using means [cites to Lehmann
among others on this]. If one it not estimating treatment effects, one may compare
the performance of a means-based with that of a ranks-based test without worry that
one is actively inspecting the treatment effect [cite to Rosenbaum and/or Imbens and
Rubin].

That is, Fisher-style randomization inference allows us, in principle, to compare the
performance of test statistics. The t(Z, e) calculated from the different regression
specifications in § 2.5 are each different test statistics, and are thus comparable in
terms of their power.

Here is our procedure (which we do here 500 times):

(1) Simulate outcomes based on the control group within each pair by drawing two
values from a Normal distribution with mean=control mean, and sd=1.

(2) Entertain a “true” value for τ and given our maintained model of effects r1i =
r0i + τ, calculate simulated responses r̃, r̃1i = r̃0i + τ. Thus, after steps (1) and (2) we
have r̃1ib ∼ N(r0ib + τ, 1) and r̃0b ∼ N(r0ib, 1) for cities i in pairs b.

The treatment assignment status and covariates are held fixed. The relationship be-
tween treatment and covariates will be the same as it is in the original dataset. The
relationships between the covariates and responses to control will also be the same
in the simulated dataset as they are in the original dataset.

(3) Assess the strict null of no effects against the one-sided alternative of τ > 0 using
both rank-based and mean-based test statistics on the residuals from a variety of
covariance adjustment specifications.
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The proportion of p-values lower than some fixed number α is a reasonable com-
parative measure of power here: For each entertained treatment effect τ, we test the
null that H0 : τ = 0.32 Recall that a powerful test is one which rejects the null when
the alternative is true. Here, we set the alternative to a series of values (that is, the
alternative is always true, and it is just more or less easy to detect as τ increases
— larger τ ought to be easier to detect). Thus, larger τ should be associated with
smaller p-values. Consider two tests of H0 : τ = 0 against HA : τ ≥ 0. With a sample
size of 8, an entertained τ = 5 could count as a different amount of evidence against
the null: a powerful test might consider it a lot of evidence, a less powerful test might
consider it little evidence.
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Figure 2: Power assessments for three linear models (r0 stands for no model or equivalently
a constant model) and two test statistics as applied to the residuals of those models. The left
panel shows average exact one-sided p-values over 500 simulations of the response to control.
The right panel shows the proportion of p-values ≤ .125. While the mean-based test (in red)
has lower mean p-values than the rank-based test (in black) for any given τ, the discreteness
of the randomization distributions (and the lack of outliers in the continous response) leads
the mean and rank based tests to reject the null at α = .125 the same proportion of the time
for any given linear model and τ. All tests consistently and correctly reject the null by the
time the true treatment effect is 6 percentage points of turnout.

2 illustrates the results of such a procedure. Here we only compare the constant,
unadjusted model (labeled r0 in the figure) to a model adjusting for baseline out-
comes (labeled r0 ∼ r0 t−1) to a model adjusting for median age of the city and %
black (r0 ∼ age + % blk). The left panel shows the mean p-values across the 500
simulations for each of the entertained values of τ. As expected, larger τ cast more
doubt on the null of no effects. The mean-based tests is more doubtful of the null in
general than the rank based test, but the largest differences in this figure are between
the different covariance adjustment specifications: the mean p-value when τ = 3 is
around .14–.15 (rank: .14, mean: .15) for the unadjusted test and around .10 for the

32Imbens and Rubin use proportion of p-values less than .1 as a way to compare power of tests [their
draft book]
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model with two covariates.

The right panel highlights this difference — in this case, in fact, there is no difference
in proportion of p-values less than .125 between the rank-based and the means-based
exact tests. If the true τ = 3, a test based on the unadjusted outcomes would reject the
null at α = .125 73% of the time while a test based on the model with two covariates
would reject the false null at the same significance level 85% of the time.

Most of the literature on Fisher-style randomization inference suggests comparative
power analyses as one of the inputs to a decision about a test statistic. Rather than
compare rank-based to mean-based (to log-based to median-based) tests, we use
this technology to give us insight into covariance adjustment in such a way as to
avoid looking directly at an estimate of the treatment effect. Notice that one may
assess the power of candidate covariance adjustment specifications in advance. This
stands in contrast to estimating effects using the linear model for both adjustment and
statistical inference — each run of the model in that case allows the analyst to look
at the p-value for the estimated treatment effect and thus becomes a kind of informal
data-mining activity.

Notice that this assessment focused on using the linear model for precision enhance-
ment, not random imbalance adjustment. Balance tests on the residuals of the linear
models would address concerns about whether a given linear model specification
effectively adjusted for random imbalance.

2.7 Assessing a Model of Effects

If our model of effects is correct, then if we remove the effect from each treated
observation, any remaining differences between the treatment and the control group
ought to be due only to chance. Say we assume r1i = r0i + τ, and, given this model,
our estimate of τ accounting for the design of the experiment is 1.5.33 Figure 3 shows
how one might go about this kind of assessment.34 The left panel shows the data
as collected — the vertical axis is proportion turning out the vote in the city minus
the mean proportion turningout to vote in the pair, thus removing the “pair effect”
from the data. The dark lines in the middle of the boxplots are the control and
treatment group means. Visual inspection suggests some kind of positive treatment
effect, and the general shifting of the distribution in the treatment group relative to
the distribution in the control group supports the model of constant additive effects
(although the different within pair differences might argue against such a model).
The right panel repeats the same plot for the control group but applies the estimated
τ to the treatment group in accord with our model of effects. Now the mean turnout
in the treatment group is the same as the mean in the control group. And the middle
portions of both distributions (indicated by the box in the boxplot) also are the same.
However, the medians still differ, with the median in the treatment group higher than
the median in the control group. This model does bring 3 out of 4 of the individual
cities closer to their matched control, but it increases the distance within the triangle

33It turns out that the median of the confidence intervals produced using the most powerful covari-
ance adjustment formula (the one using age and % black) is 1.5 and this is a reasonable point estimate.

34This is inspired by Rosenbaum (2010, Chapter 2) in which he compares additive, multiplicative,
and “Tobit” threshold models of effects of a job training program.
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pair, and more importantly, still leaves some of the turnout in the treatment group
unaccounted for.
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Figure 3: Raw responses of control and treated cities (left panel) and raw control responses
compared to treated responses adjusted for a constant, additive model of effects (right panel).
A correct model of effects would make the two groups look equivalent but for random noise.
Pairs are marked with symbols. Since the baseline turnout differed between pairs, turnout
here has been “aligned” or “pair-mean centered” to enable easier visual comparison of re-
sponses.

What about a weaker hypothesis? Perhaps something more like r1i = r0i + τi but
where we are predominantly interested in the average difference in potential out-
comes? There is a sense in which our assessment of the constant, additive effects
model is an assessment of our model of an average treatment effect. Of course, there
are many possible collections of τ which could produce the same average of 1.5. (for
example, we could have some enormously positive effects within some pairs and
enormously negative effects within other pairs — or no effect in all but 1 pair, but a
large and counterbalancing effect in the other pairs.) Thus, although this diagnostic
for models of effects was designed to compare what happens given sharp and fo-
cused models of effects, it could also be useful to assess the usefulness of the more
fuzzy average treatment effect presumption.

3 Discussion

3.1 Credible Inference is Possible without a DGP in a Small Randomized Field Ex-
periment

We have shown that statistical inference does not require a model of outcomes or a
model of effects as long as (1) one restricts attention to tests of the sharp null of no
effect and (2) one believes one’s model of assignment. Inference about effects (rather
than no effect) requires adding substantive knowledge about the process relating
treatment to potential outcomes (i.e. a model of effects).35 Rejecting null hypotheses

35Note that this is one way in which Fisher’s framework differs from Neymans: Neyman poses a
“weak” null (about average differences) and focuses attention on estimating a difference of averages —
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about effects may either indicate that τ 6= τ0 or that the model of effects is wrong. In-
ference can be made more precise if the analyst knows something about the outcomes
and uses this information for noise-reduction. At no point did we rest the validity
of the coverage of the confidence interval on a DGP process model or asymptotics,
although we did add more and more structure to the inference. What is nice about
this, we think, is that one can base statistical inference in experiments on some very
credible stories. Although most confident with tests of the sharp null of no effects,
one is not restricted to such tests, and, in fact, DGP-models can be harnessed so
that inference about effects is targeted as precisely as possible on those parts of the
outcome not determined by well-known covariates. Those who know the history
of statistics will not find these facts surprising, although they might be happy to see
how the work of Neyman and Fisher can be extended to handle modern data analysis
problems. Others, whose only training in statistics has occurred within departments
of political science, sociology, or economics, will be, we hope, pleasantly surprised.

This investigation of the Newspapers experiment also yields a few implications for
design of studies. First, small samples do not require analysts to eschew probabilistic
inference. We have long known that Bayesian inference is possible in small samples.
And this paper shows another mode of inference that may also be useful.36 Sec-
ond, this study re-emphasizes the importance of substantive information about the
outcome of interest in helping “permitting the phenomenon under test to manifest
itself” (Fisher, 1935, page 24). Assigning treatment within sets of units which are
homogeneous on the outcome enhances the precision of estimation.37 Thus, in a
study with few units it is wise to stratify before assigning treatment. Substantive
information is also important in allowing for effective covariance adjustment and in
justifying the model of effects that is maintained in order to test effects.

In a sense, randomization inference allows scientific attention to return back to the
political phenomena of interest: what causes what? what counter-factuals ought
we to entertain? what units received the treatment, in what way? That more in-
formation is better within this framework is a good thing.Randomized experiments
make models of assignment more credible (in general) than observational studies.
And randomized experiments are a natural place to apply these methods.38 In cases
where physical randomization has occurred, then it is certain that the scholar knows
a lot more about the assignment mechanism than anything else. In that case, there
are few arguments against using randomization inference in principle although one
may pragmatically approximate randomization-based results using other methods.

that is, focuses on a particular model of effects. Fisher begins with no model of effects but then requires
them once hypotheses about effects are entertained.

36There is also some interesting recent research on higher order asymptotics which appears to allow
DGP based inference to proceed in small samples as well Brazzale et al. (2006); Strawderman (2000).

37Any textbook’s treatment of the paired versus unpaired t-test will attest to this fact dramatically
(See, for example Rice, 2007, § 11.3). Rosenbaum (2005) shows this nicely, but we have long known
about this from at least Kish (1965), [find part of Campbell, Stanley, let alone Blalock, etc..], and also
have recent advice re-emphasizing this fact from Imai et al. (2008).

38Keele et al. (2008) provide a detailed argument in favor of applying these kinds of techniques to
laboratory experiments.
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3.2 Common Questions and Concerns

3.2.1 What about Time-series? Or Factor Analysis?

Past work shows how these basic ideas can be extended: to instrumental variables
(Imbens and Rosenbaum, 2005), to clustered assignment within pairs (Imai et al.,
2008), to clustered assignment with instrumental variables and a binary outcome
(Hansen and Bowers, 2009), to other multilevel designs (Braun, 2003; Small et al.,
2008) to longitudinal data (Haviland et al., 2007), and to cases with interference be-
tween units (thus violating a part of the SUTVA assumption) (Rosenbaum, 2007).

We have not seen randomization inference used in situations with extensive non-
random missingness in the outcomes in addition to non-random selection of units
into complex intermediate outcome classes (labeled by Frangakis and Rubin (2002) as
“principal strata”). Nor do we know about extensive applications to complex struc-
tural models of causality or measurement (i.e. no time-series, no structural equation
models, no IRT/factor analysis). There is nothing inherent about randomization in-
ference which would prevent application elsewhere, but it has just not received the
kinds of sustained attention that the linear model has received over the past 50 years.

3.2.2 How can we learn about the population by focusing on the sample?

By conditioning our statistical inference on the sample at hand, one might worry that
we compromise the scientific importance of conclusions emerging from the analysis.
That is, one might ask, “Who cares that the effect of some causal process was τ in
your sample? I care about the population, or about future time points, or about other
possible samples.” We think that external validity is as important as internal validity
in the eventual judgement of the scholarly community about the value of a study
or theory or finding.39 We don’t believe, however, that one is required to answer
the question, “What happened in your study?” in terms of a (possibly unknown and
undefined) population let alone other samples (across time and/or space). In fact, we
feel that randomization inference improves the ability of researchers to talk about the
general from the specific. By offering researchers the ability to have great confidence
that what they are seeing in their specific sample is actually what was happening
in that sample (or that their sample does not provide enough information to offer
much information about their chosen test statistic), researchers have a much more
solid sense of the specific from which to address the general.

We do believe that statements about causality as regards a social scientific theory
must involve consideration of the general (as long as the general is defined clearly).
That is, a clear effect of a treatment in only one sample, once, and that is never
replicated or replicable, does not tell us as much about a general causal theory as such
an effect which can be replicated and is replicated. (And perhaps, more strongly and
also more realistically, any given causal theory ought to imply a host of observational
phenomenon and effects — some of them are easier to see in certain situations and
samples than others — and what happens in one sample, in fact, then, ought to reflect
directly on the theory without any reference to external validity [cite Rosenbaum].)
That is, imagine we were skeptical about the equation governing the velocity of a ball
dropped from a height. That equation (an operationalization of a theory) ought to

39For discussions of ”external” and ”internal” validity see (cite Campbell or others).
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imply something about this ball from this height and if we don’t observe what we’d
expect to see in this specific instance then the theory is cast (perhaps weakly) into
doubt. And the precision and confidence with which we can talk about this specific
instance adds to the strenght of this doubt. Of course, replication would also add to
the doubt. But, it is our hunch that replication would strengthen the doubt less so on
an occasion by occasion basis than the research design and analysis of a particular
critical implication of the theory.

In general, thinking that a linear specification or a likelihood or a prior offers the
analyst any inherent confidence in generalizability is, we think, wrong headed. Well
justified likelihoods and smooth specifications and priors may well offer us more
confidence that our findings in a given study are the result of occurrences in the world
and the research design rather than an accident of a series of modelling choices. But
again, the confidence we desire is about the effects in a given study. And the more
confidence we have in this study’s findings, the more confidence we will have when
we turn to thinking about generalizing these findings; when we turn to asking what
these particular findings mean for some well-defined general.

One could imagine a workflow which, given a general theory and empirical implica-
tions of it, would (1) assess the implications using a particular research design and
data analysis where both design and analytic methods are chosen so as to maxi-
mize the clarity and confidence of the assessment, and (2) then the scholar would
ask, “What do these findings mean for our doubt about this theory as it would apply
elsewhere in the domain of application?” and (3) perhaps this question would spawn
other implications which would themselves be testable in the specific and particular,
and the question about the theory and general upon confrontation with the next set
of confident and clear results would again raise the next set of questions and perhaps
new theory.

To imagine that a single test or a single moment of data analysis can answer both
“What happened in this instance?” and “What does this finding mean for other
instances (places, times, circumstances)?” seems to us to ask too much of weak tools
let alone weak theory (and weak humans).

What this all means is that (1) by recommending randomization inference we are
deeply concerned about external validity, (2) and that we think in fact that claims
about external validity and theoretical importance of specific findings are enhanced
by careful attention to the specific and particular first and foremost (after careful
thought about the theory and implications).

3.2.3 Testing the many hypotheses that comprise a confidence interval sounds like a big
multiple comparisons problem.

Although we are testing many hypotheses to generate a confidence interval, we are
only testing each hypothesis once. We do not have to adjust the p-values for these
tests to account for multiple testing (the way one might want to do so in the case of
running many regressions with different predictors, hunting for one with a p-value
of less than .05 upon which to build a post-hoc story about how the outcome comes
about). The CI creation is driven by pre-specification of a Type I error rate and of null
hypotheses not by exploration of the data. This pre-committment protects CIs created
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from such direct inversion of hypothesis tests from multiple testing problems.

3.2.4 How should one choose a test statistic?

Randomization inference offers the advantage that an analyst may choose a test statis-
tic that ties tightly with the substantive concerns facing the analyst and also among
test statistics of equivalent substantive meaning, can choose among them for the one
which will produce the tightest confidence intervals. This flexibility can be see as a
disadvantage or an element of arbitrariness:

Such [randomization-based] P-values can be calculated for: any sharp
null hypothesis . . . , any test statistic (e.g., the median difference in matched-
pair differences), and any a priori definition of unusualness (e.g., squared
value greater than observed squared value). Consequently, there is a great
deal of arbitrariness (flexibility in the hands of a knowledgeable and wise
analyst) except by convention (Rubin, 1991, page 1222)

But flexibility is also an advantage. Whereas in linear models the analyst is not
asked “why a slope or a predicted probability?”, analysts using randomization in-
ference bear the burden of explaining of why they chose their test statistic. In ex-
change for justifying their choices they may choose any function of treatment assign-
ment/selection and outcomes that is most meaningful to their work and easiest to
communicate to their audiences. Of course, and perhaps most importantly, differ-
ent test statistics will have different power in different designs. Thus, a common
convention is to use multiple different test statistics, reporting them all.

In this paper we have also presented a principled way of assessing choice of test
statistic and/or covariance adjustment specification in the form of power analyses
completed before estimating treatment effects but after data collection.

3.2.5 How should one choose a model of effects?

Advice about choice of a model of effects is the same as advice about choosing the
specification of a linear model as it relates treatment to outcomes: one assumes that
an experimental treatment has been administered because we have some hunches
about how and why said treatment ought to change the outcome. These hunches
(often called “theory” or “hypotheses”) specify this relationship. The nice thing about
randomization-based inference is that it is easy to see how to assess the fit of a model
of effects using the kinds of plots (or associated tests) we quickly demonstrated in
§ . Similar assessments are possible in the linear model framework: for example
drawing from the implied posterior/sampling distribution of one’s coefficients and
generating the distribution of predictions from the model is known to be an excellent
starting point for assessing Bayesian and other outcome model dependent fits [cite
to relevant discussions by Gelman and co-authors if not also Box].

3.3 Conclusion

[Ringing conclusion]
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