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Abstract

The design of a randomized study guarantees not only clear and “inter-
pretable comparisons”(Kinder and Palfrey, 1993, page 7) but valid statistical
tests even in the absence of large samples or known data generating processes
for outcomes (Fisher, 1935, Chap 2). Yet, while design alone yields valid
tests the tests could lack power: a valid but wide confidence interval may be
more useful than a misleadingly narrow confidence interval, but still shed lit-
tle light on the theory motivating the study. After a brief demonstration of
Fisher’s statistical framework, we show a method by which a researcher may
use substantive background knowledge about outcomes in order to increase
the power of her statistical tests. Combining substance and design in this par-
ticular way enables valid and powerful tests. We combine modern methods
of machine learning with Fisher’s conceptual framework and survey sampling
based design-based statistical inference originating with Neyman in order to
maximize power without compromising the integrity of the resulting statistical
inference. We apply our ideas in the context of a natural experiment created
by the London subway bombings of 2005.
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“Though the test of significance remains valid, it may be that without
special precautions even a definite sensory discrimination would have
little chance of scoring a significant success.”

(Fisher, 1935, page 25)

Baseline information on experimental subjects promises to increase the precision
of statistical inferences about causal effects. At least since Fisher (1935) and Cox
(1958) scholars have known that information measured pre-intervention, also known
as covariates, can help shrink confidence intervals and p-values. Yet, concerns about
multiple testing and test validity have limited the ability of covariate adjustment to
fulfill its promise. This paper proposes a method that enables the precision gains
of covariance adjustment without multiple testing while maintaining the validity of
randomization-based statistical inference.

A covariate adjusted confidence interval will tend to be smaller than the unadjusted
version. The common practice to produce covariance adjusted confidence intervals
using a covariate xi in an experiment with a binary treatmentZi ∈ {0 = control, 1 =
treated} and an outcome Yi involves using the coefficient β̂1 from a linear model like
Yi = β0+β1Zi+β2xi.1 WithoutXi, a confidence interval for the β̂1 coefficient is the
confidence interval for the difference of means of Yi between the treated and control
groups. With xi in the model, this confidence interval still refers to the difference of
means of Yi but Yi with variation due to xi removed. Since xi is a covariate (i.e. can-
not have been influenced by the experimental treatment), in a large experiment, the
difference of means between treated and control groups should not change, but the
confidence interval should shrink because the extraneous variation in Yi unrelated to
the experiment (but related to xi) should have diminished by the adjustment process.2
If, however, analyst tries many different adjustment specifications (say, adding and
dropping different covariates, or trying different functional forms), then the reported
confidence interval may no longer be valid: an interval claimed to falsely exclude
the truth no more than 5% of the time, may do so more often. Thus, skeptical read-
ers may view the report of a statistically significant result from an experiment that is
only seen after covariance adjustment with suspicion: one might ask, for example,
in how many previous analyses was the result insignificant?3

To counter such concerns, one may declare a covariance adjustment strategy in ad-
1In this paper a lowercase letter is a fixed quantity and uppercase for random quantities (for ex-

ample, xi is unaffected by the randomized experimental treatment, Zi, and so is fixed).
2To see how covariance adjustment removes extraneous variation from Yi recall that we can es-

timate β̂1 in three steps: (1) produce the residuals from a regression of Yi on xi, ei,Y |x (these x-
residualized versions of Y represent Yi with no linear relationship with xi), (2) produce residuals
from a regression of Zi on xi, ei,Z|x (these x-residualized versions of Z represent a Zi with no linear
relationship with xi — which, in a large experiment, should be basically the same as Zi itself given
the randomization of Zi), and (3) regress ei,Y |x on ei,Z|x to produce β̂1. Since the x-residualized
version of Yi will have lower variance than Yi itself, standard error on β̂1 will be lower than it would
be in the unadjusted case.

3This process of trying out different covariance adjustment strategies is not a process of wrong-
doing, by the way, as Gelman and Loken (2013) wisely note, the problem involves tailoring the
adjustment to the data in some non-pre-specified manner.
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vance: the error rate of statistical tests will be controlled if the analyst follows the
pre-determined plans.4 Yet, even if an analysis plan is announced in advance (to
counter concerns about multiple testing), one may ask whether the precision en-
hancement promise of a given covariance adjustment strategy will be fulfilled: a
claim made before inspecting covariate to outcome relationships may leave statisti-
cal power on the table. Even if xi and Yi relate linearly and strongly in past exper-
iments, they may relate non-linearly, or not at all, in any given experiment. In fact
study dependent relationships between outcomes and background information will
determine, in part, the width of the confidence intervals that one will produce with
or without adjustment. So, then, how can one a produce a study- or data-dependent
mode of covariance adjustment without running the risks of what some have called
‘p-hacking’ or ‘fishing’?

This paper proposes such a method. Rather than declare a specific covariance adjust-
ment model specification before seeing the data, we demonstrate a method that re-
quires only pre-specification of the ingredients (i.e. the names of the covariates) and
the algorithm for covariance specification search. Recent advances in procedures for
’machine learning’ or ’statistical learning’ allow very flexible approaches to model
specification search. We take advantage of those advances, but because we adopt
a modularized approach to the analysis of experimental data here, we can take ad-
vantage of the promise of covariance adjustment using machine learning techniques
while avoiding multiple testing, and which has the same validity of statistical test-
ing as any randomization inference based analysis of experimental data. Basically,
we propose to delegate the choice of covariance adjustment strategy to a machine
learner, but to separate covariance adjustment from confidence interval production
so that no multiple testing occurs. We define the targets of our causal inference at
the individual level following Fisher (1935) but speed the process of randomization-
based statistical inference with an approach inspired by Neyman (1923 [1990]) and
developed in Hansen and Bowers (2009).5 We demonstrate this modularized ap-
proach with a natural experiment of the effect of terrorist attacks on social capital
constructed by comparing the responses of roughly 1200 2005 UK Home Office
Survey respondents before versus 3300 after the July 2005 London bombings. The
responses in this survey are counts but our statistical inferences do not depend on
assumptions about outcome distributions. At the end of the paper, we show that our
approach never makes statistical inferences less precise, and that gains of around

4Humphreys, de la Sierra and Van der Windt (2013) articulate the fishing problem and advocate
pre-analysis plans. Rosenbaum (2008) and Hansen and Sales (2015) provide some examples of how
pre-specified plans for hypothesis testing control error-rates even when multiple hypothesis tests are
conducted.

5Our approach is explicitly modular — allowing us to separate the task of choosing a covariance
adjustment model from the task of statistical inference about causal effects. In this way, we are
inspired by Rosenbaum (2002b) although our approach is more like the Peters-Belson approach to
covariance adjustment (Peters, 1941; Belson, 1956). Our use of machine learning links us with
Bloniarz et al. (2015) and Van der Laan and Rose (2011) although we differ from those two different
approaches to using machine learning in causal inference by our Fisherian/individual level targets of
causal inference and our statistical inference procedure.
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50% in precision are possible in our application and simulations based on the UK
Home Office Survey+2005 Bombings Data.

1.1 Why worry?

Imagine an experimenter that reports a statistically significant results for a treat-
ment effect using a linear regression model including the outcome, the treatment,
and age. The experimenter argues, correctly, that age is independent of treatment
assessment (in expectation) and, since age predicts the outcome, including age in
the model will merely help the treatment ”score a significant success” when it might
otherwise be a valid but noisy (i.e. not statistically significant) result. The risks run
by this experimenter include: (1) The Suspicion of Snooping. Some could wonder
whether age was chosen after a hunt. Did the experimenter try 100 different covari-
ance adjustment strategies, each time inspecting the p-value on the treatment effect,
and only stopped hunting when he found a p < 0.05? If so, we cannot interpret the
p-value as a clear measure of information against the null of no effects. And post-
hoc adjustments for multiple testing require knowledge of the amount of and pattern
of multiple testing (which may not be available if the hunt was not disciplined) (2)
Concern and Controversy about Test Validity if the experiment did not randomly
assign treatment and control to two equal sized groups or the experiment is small,
some might point out that conventional covariance adjustment (i.e. adding a covari-
ate like a control variable to a linear model) produces biased estimates of treatment
effects (and biased statistical tests) (Freedman, 2008; Lin et al., 2013). Others might
argue that these biases should be very small and likely not worrisome (Green, 2009;
Schochet, 2010). Which perspective would be true for a given experiment would
depend on the details of the experiment and would require extra work; (3) Power
left on the table Even if the analyst declared a covariance adjustment strategy in
advance, followed Lin et al. (2013)’s advice in regards the specification of the co-
variance adjustment in the linear model and the asymptotically valid standard error
and showed simulation evidence that their study was close to asymptopia, we might
wonder whether the given confidence intervals could have been shrunk more if we
had known that, in the given dataset, age had a nonlinear relationship with the out-
come in the control group and that shoe-size also turned out to account for some of
the non-treatment-effect related variance in the response.

This paper contributes to the theory and practice of the statistical analysis of exper-
iments with a modular approach for assessing the causal effects of interventions. If
one can isolate the task of drawing statistical inferences about causal effects from
other auxiliary tasks, one can make more robust and transparent claims about re-
lationships between an intervention and an outcome and enhance the precision of
statistical inferences. The ability to isolate statistical inference about causal effects
from other tasks arises from the use of design-based statistical inference (either
Fisher’s permutation-based randomization inference or Neyman’s sampling-based
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randomization inference). The enhanced precision arises from the use of modern
machine learning in predictive models which represent past scholarly knowledge
about the outcome. The validity of the statistical inferences from this approach is
not contingent on the veracity of any given model except for the model of treatment
assignment of the experiment itself. This paper also contributes to the literature on
design-based statistical inference with the application: we produce confidence inter-
vals for a diverse set of count-variables without requiring any particular probability
model of outcomes.

2 The London Bombings of July 2005: Count Out-
comes and Natural Experiment

During the morning commute on July 7th, 2005, four suicide bombers placed ex-
plosives on the London public transport system killing 52 people and injuring over
700 (BBC News, 2008). The bombers claimed to be soldiers in a battle between
“the West” and “Islam.” We know that terrorist attacks aim to disrupt the targeted
civil society. We demonstrate the method developed here by asking whether this po-
litical violence influenced the civic engagement of ordinary people in Britain. The
data come from the 2005 Home Office Citizenship Survey, which was an in-person
survey of roughly 14,000 British residents in England and Wales. The survey was
conducted in respondents’ homes over the period of March 8 to September 30. 8103
people were interviewed in the weeks proceeding the bombings, and 5975 people
were interviewed after the bombings. Although the bombing occurred unexpect-
edly in the middle of the survey field work, the survey interviews did move around
the country systematically such that relatively more interviews happened after the
bombing in London when relatively few were happening in Wales. To bolster the
claim that we are analyzing a natural experiment we first stratified the data by the
ten governmental regions which had organized the survey sample and fieldwork.
We then restrict attention to a window of 2 weeks before the bombing to 9 after the
bombing. And, finally, we decided that we would only compare men to men and
women to women (because we figured that reactions to the bombing as manifested
in answers to questions about social capital might vary between those groups). Our
final design compared favorably with an equivalent block-randomized experiment:
The Hansen and Bowers (2008) d2 omnibus balance test produced a p =0.87 against
the null hypothesis of simultaneous balance on 140 covariate terms. In the end, and
as we explain in detail in appendix Appendix A, we ended up with about 4500 sub-
jects in the research design.

Terrorism attacks seek to disrupt civil society. If these attacks were successful, re-
spondents interviewed after the bombing should report less social cohesion. Yet
the attacks may impel citizens to rally and may provide a very salient reason for
public action. The 2005 UK Home Office Survey asked a series of questions to
gauge neighborhood cohesion such as “People in this neighbourhood do not share
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the same values? (Agree/Disagree)”, community efficacy such as “If some chil-
dren were spray-painting graffiti on a local building, how likely is it that people in
your neighbourhood would do something about it?”, and trust in institutions such
as “How much do you trust the police?” To combine the responses to the differ-
ent items measuring the same concept, we coded responses in the top categories
as “positive social capital.” Figure 7 in Appendix B shows the distribution of the
positive responses along with the full text of these questions. If the bombing had
not occurred, would social cohesion and trust have been different? Did the bombing
have an effect on social capital?

3 Attributing Effects to Treatment for Count Outcomes

If the bombing had an effect on a person i, then the number of positive responses to
questions asked before the bombing, yi,Zi=0 would differ from the number of pos-
itive responses to questions asked after the bombing yi,Zi=1, where Zi records the
timing of the survey interview (0=before the bombing and 1=after the bombing).
We might write yi,Zi=1 = yi,Zi=0+τi to represent a theoretical expectation that each
person experienced a different effect, τi, from the bombing (and that each effect
was additive (or subtractive)). For situations with one parameter, like the constant
effects model yi,Zi=1 = yi,Zi=0 + τ , Rosenbaum (2010, Chap 2) explains how con-
fidence intervals for τ could be created. With varying τi, one could, in principle,
produce N -dimensional confidence sets. For example, one could assess hypotheses
about all possible τi the process would be very time consuming, and perhaps yield
little of substantive use: knowing that it is implausible that {τ1 = 1, τ2 = 0, τ3 =
0, . . . , τN = 1} but plausible that {τ1 = 0, τ2 = 0, τ3 = 1, . . . , τN = 0} tends
not to address a scientific question about overall effects. To simplify the problem
Rosenbaum (2001, 2002c) proposes a function of the τi as an object of scientific
interest when outcomes are binary, writing A =

∑n
i=1 Ziτi as the effect attributable

to the treatment on the treated, or the “attributable effect.” In this paper we extend
the analysis of attributable effects to the case with a count outcome (so that τi can
be any non-negative integer rather than restricted to 0 and 1). In theory, we could
develop a confidence interval for hypothesized A0 with the following algorithm: For
a given hypothesized A0 (say, H0 : A0 = 1), we list all k of the ways that a vector of
τ = (τ1, . . . , τN) can be summed to equal A0.6 For each possible vector, generate a
p-value labeling it pk. We define the p-value ofA0 asPr(A0) = max(p1, p2, . . . , pk).
Therefore an A0 with a large p-value indicates the data were not unlikely for at least
one vector of A0. By repeating this procedure for many hypotheses A0, we can de-
fine a confidence set as the collection of hypotheses not rejected at a given level. An
obvious disadvantage of this algorithm is that in a dataset of thousands of respon-
dents, the number of atomic hypotheses associated with each composite hypothesis
is enormous.

6Constraining τi to a non-negative integer allows the use of a partition, the set of which will be
finite, if large, for any given A0.
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How can we use what we observe to learn about the number of positive responses
that we would not have seen were it not for the bombing without millions of hypoth-
esis tests?7 When the research design includes many strata or pairs, Rosenbaum
(2002a) and Rosenbaum (2010, §2.5) develop an approach to this problem in the
binary outcome case which identifies, in advance, which two hypothesis tests would
provide the most and least evidence against any given null, if both tests have small
p-values we reject the composite null, if either has a large p-value, we cannot reject
the composite null. With a small number of strata and a binary outcome, Hansen
and Bowers (2009) showed that we can think of A as a finite population total such
that one can produce approximate confidence intervals for A by estimating the total
yi,0 under the idea that the observed outcome among controls is a random sample
from the total. This idea extends naturally to count outcomes: given an individual
level model τi ≡ yi,1 − yi,0 where y ≥ 0 and yi,1 ≥ yi,0, we define A for the whole
experimental pool in the set U as the sum of the positive differences Generalized
attributable effect: A ≡

∑
i∈U Ziτi.

A =
∑
i∈U

Ziτi =
N∑
i=1

Zi(yi,1 − yi,0) (1)

C is the set of control group observations (pre-bombing respondents).

=
∑
i ̸∈C

yi,1 −
∑
i ̸∈C

yi,0 (2)

because
∑

i∈C Yi − yi,0 = 0. we can write

=
∑
i∈U

Yi −
∑
i∈U

yi,0 ≡ tU − tC (3)

= observed total overall
fixed and observed

− total outcome under control
unobserved, to estimate

(4)

The attributable effect, then, combines the fixed total, tU =
∑

i Yi (the total number
of positive responses by the respondents in the experimental pool or universe), with
the partially observed quantity, tC =

∑
i yi,0 the total number of positive responses

the survey respondents would have volunteered had they been interviewed before
the bombing. Causal and statistical inference about A then is equivalent to inference
about the partially observed total in the control group tC =

∑
i yi,0 because that is

the only quantity that might vary with the design: selecting different control group
members from the experimental pool will yield different tC whereas the total in the
experimental pool, tU remains fixed regardless of who is chosen to be a control.

7We speak in terms of positive responses caused by the bombing here, but later allow for there to
be fewer such responses after the bombing than before it — i.e. allowing for a negative effect of the
bombing.
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We know from the survey sampling literature that an unbiased estimator of tC is
t̂C = NȲC (Lohr, 2001) and in large samples under regularity conditions allowing
a central limit theorem to operate an approximate confidence interval would be:
CI(tC) = t̂C ± zα/2SE(t̂c). Returning to A, using the decomposition above, we can
write a confidence interval as: CI(A) = tU − ĈI(tC). This conceptualization of
A was used by Hansen and Bowers (2009) to create an large-sample approximate
confidence interval for binary outcomes.

Now, the same literature which established that t̂C = NȲC is an unbiased esti-
mator of tC , also developed the “regression estimator of the finite population to-
tal” such that t̂C =

∑
i∈U Ŷi +

∑
i∈C(Yi − Ŷi) where we estimate (1) β̂ from a

model fitting Yi∈C as a function of the control group covariates and then (2) ex-
trapolate from the control group to the entire study using the covariates observed
for both groups, for example, using a linear model, Ŷi = Xβ̂ (See (Lohr, 2001,
Chap 4) and Särndal and Swensson (2003)). Notice that because we subtract Ŷi

for i ∈ C in the second term of the expression for t̂C the estimator of the total out-
come in the control amounts to using the total of the observed control outcomes plus
the extrapolated control outcome for the treated observations. In stratified designs,
t̂C =

∑
i∈U Ŷi+

∑
i∈C(Yi−Ŷi)/πi where we weight the second term by the sampling

probability, πi which is the ratio of controls to treated in a given stratum. In the sim-
ple unstratified case for n control units andN total units in the experimental pool, the
standard error of the regression adjusted estimator is: SE(t̂C) = N

√
(1− n

N
)s2e/n

here s2e =
∑

i∈C e2i /(n− 2) and ei = Yi − Ŷi. The standard error of the unadjusted
estimator is SE(t̂C) = N

√
(1− n

N
)s2Y /n where s2Y =

∑
i∈C (Yi − Ȳ )

2
/(n− 1). If

our model of Yi∈C predicts it well, then s2e will be smaller than s2Y and the standard
error of t̂C will be smaller.8

4 How should we choose a covariance adjustment spec-
ification?

Covariance adjustment requires covariates,X = {x1, . . . , xp} and fitβ = {β1, . . . , βp}
that predicts the outcome in the control group very well (such that s2e is small). Al-
though the regression estimator is a well established way to use auxiliary informa-
tion to improve estimates of finite population totals from sample information and we
can reconceptualize this process to enable us to learn about a control group from an
experimental pool, any attempt to use covariates must engage with a number of ques-
tions: Which covariates ought to be included? Which function of covariates ought to
be fit? Which fitting procedure (Least squares? Least absolute deviations? Outlier

8The regression estimator is not unbiased, but, as Lohr (2001, §4.3) explains, in a simple regres-
sion with one single covariate, x, the bias is proportional to −cov(β1, x̄) and tends to be small in
large samples. In our application, we guard against the small effects of this bias during the model
selection stage.
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resistant least squares?)? Luckily, the rough procedure of restricting model fitting
to the control group allows analysts to use the data to answer such questions without
calculating treatment effects: covariance adjustment in the context of randomiza-
tion inference for causal effects separates adjustment from assessment of treatment
effects.

In this paper we demonstrate the use of one of the more well-established machine
learning techniques to answer some of the questions raised in the previous paragraph.
Our answer to those questions is that we want the function and set of covariates which
enable the most powerful tests of our causal model. The best fitting prediction model
of outcomes in the control group is one candidate for creating a most powerful test.
And a host of procedures for selecting predictive models exists — most notably
the penalized linear model based approaches inspired by Tibshirani (1996)’s lasso
penalized least squares model. In this paper we use a penalized regression model
that is a superset of the lasso and ridge models known as the elastic-net model (Zou
and Hastie, 2005). Any other producer of Ŷi as conditional means of Yi based on
inputs of X would also work.9 We choose the elastic-net model here because it is
faster than a random forest or other more iterative methods of machine learning.
It also has a form that should not be too strange for a social science audience: we
choose a β̂ which minimizes the least squares criterion plus the elastic-net penalty:

β̂(Elastic-Net) = arg minβ

n∑
i=1

(yi −Xiβ)
2 + λ

p∑
j=1

(αβ2
j + (1− α)|βj|) (5)

This criterion involves both the lasso or L1 penalty, |βj|, (i.e. models with larger
coefficients in absolute value will be less preferable than models with smaller co-
efficients (or coefficients of 0)) and the ridge or L2 penalty as β2

j (i.e. models with
larger coefficients will be increasingly less preferred although the penalty for models
with small coefficients is less severe than the lasso penalty would be).10 The param-
eter α weights the two different penalties. A large body of evidence suggests that
models like this (of which there are now many varieties) make more accurate extrap-
olations (i.e. would predict how treated subjects would act in the control condition)
than models without such penalties.11

A key feature of penalized linear models that helps us in the task of choosing a co-
variance adjustment model is that the process of choosing a model (i.e. choosing
covariates and β) can be reduced to a choice of one or two tuning parameters. In

9With skewed outcome with long tails, it would be tempting to use a lasso penalized quantile
regression model. This won’t work here because we are estimating a sum or total using conditional
means and the relationship between means and conditional quantiles is not straightforward. An alter-
native approach would be to use a Huberized or M-estimator for the least squares part of the model.

10Although we began this project using the adaptive elastic net because of its oracle properties, it
provided no additional benefits over the simple version in our specific application.

11See Efron (2010) or Hastie et al. (2005), for example, on why penalized models seem to work
so well compared to unpenalized models.
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this case, λ and α together determine a model — if λ is large, then the model will
have many zero coefficients (i.e. the model will exclude many covariates or covari-
ate terms). If λ is small, then nearly every covariate will get a little weight in the
final prediction of t̂C . Since machine learning is not yet common in political sci-
ence, figure 1 shows an example of how tuning parameter choice amounts to model
choice. Here, we specified a simple model whereby number of positive community
efficacy responses in the control group would depend on immigrant status, house-
hold size, age, years lived in current home, household income, and gender. We also
set α = .5 to equally weight the two types of penalties. As the penalty parameter
λ goes from approx 0 or log(λ)=-6.48 to approx 0.45 or log(λ)=-0.81, the sizes of
the coefficients decrease to zero. For the largest λ only immigrant status remains as
a strong predictor.

−6 −5 −4 −3 −2 −1

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

log(λ) given α = 0.5

β j

6 6 5 5 3 1

Immigrant

HH Size

Age

Home Tenure

HH Income

Female

# Non−Zero Coefs.

Figure 1: Example of the influence of choice of λ on model choice given α = .5. As the
penalty parameter λ goes from approx 0 or log(λ)=-6.48 to approx 0.45 or log(λ)=-0.81,
the sizes of the coefficients predicting positive community efficacy responses among control
group respondents decrease to zero.

Each vertical slice of Figure 1 represents one model. And, one can imagine many
other such figures for different α weights. So, this is one of our proposals: we can
side step the problems of covariance adjustment specification choice by delegating
the problem to an algorithm. The analyst is still responsible for the ingredients —
one still has to exercise some judgement about which covariates to include and how
to include them (and what counts as a covariate and not a post-treatment variable).
Yet, we can reconceptualize and simplify covariance adjustment specification choice
as tuning parameter choice within a machine learning model, then we can take ad-
vantage of the gains in prediction from those types of models.
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4.1 How do choose tuning parameters for covariance adjustment?

How should we choose among possible models now that we have simplified model
choice from all models with all combinations of p covariates to only 2 tuning pa-
rameters? Merely choosing a model that fits the control group outcome well is not
enough: a model which perfectly fit the control group could either also perfectly fit
the treatment group, which would lead to invalid statistical tests: the false rejection
rate of a statistical test with a process that has no variation would be either incredibly
high or low and not controlled.12 In addition, an excellent fit in the control group
would extrapolate very poorly to the treatment group, and this would lead to poor
power in casual effect assessment.13 Although the literature on machine learning
advises analysts to choose tuning parameters using cross-validation and guided by
mean-squared error or a penalized version of mean-squared error (like the AIC or
BIC), in this paper we choose tuning parameters based on the power and error rate
of the resulting confidence intervals. Although we began with the idea that we could
simply plug-in the procedures common in the machine learning literature, our exper-
iments taught us that the tuning parameters which are optimal from the perspective
of cross-validated mean-squared error are not those that both enhance power and
maintain a controlled false rejection rate of statistical tests. To account for the extra
variability that arises from the model search, we follow Faraway (1992)’s general
idea to replace t-quantiles with nonparametric bootstrap-t quantiles, t∗α/2 such that:

CI(tC) = t̂C ± t∗α/2SE(t̂C)eq : theci)

Here is the procedure that we used:

4.1.1 Ingredients:

• strata: a vector containing strata indicators. all operations are conditional on
these fixed sets.

• pseudodata: A dataset the same size as the original but with only control
units sampled with replacement. The point is to make a dataset with the same
number of rows as the original but containing only information from the con-
trols. We sample controls with replacement within stratum so that the stratum
sizes are the same.

• treated: a vector with the same treatment design as the original study assigned
to the pseudodata. So, a set with 25% controls in the original data will assign
25% of the members of that set in the pseudodata to control.

12Hansen and Bowers (2009, § 3.3)) noted that an overfit covariance adjustment model might lead
to overly optimistic confidence intervals in the context of specifying covariance adjustment models
by hand.

13Hastie, Tibshirani and Friedman (2009, Chap 7) provide a lucid discussion of the problems of
overfitting for prediction and for attempts to characterize error of extrapolation for a chosen model.
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• yhatmat: A matrix with each column containing a ŷC vector arising from an
elastic-net fit to the pseudodata using covariates with strata weights for each
unit. Each column represents ŷC for different set of tuning parameters.

• response: a vector containing the outcomes measured for the pseudodata.

4.1.2 Choose a powerful covariance adjustment model.

1. For each column of yhatmat estimate the total hours that would be volunteered
in the pseudocontrol condition: t̂C =

∑
i∈U ŷi0 +

∑
i∈C(yi0 − ŷi0)/πi where

ŷi0 = f(Xi,β), X contains the covariates and β the fitted coefficients from
one elastic-net model fit to the controls within the pseudodata, U is the set of
the whole pseudodata, C is the set of psuedocontrols within the pseudodata,
and πi is the proportion of i’s in that control group in i’s strata. ŜE(t̂C) is
defined in the next step.

2. For a given stratum, s of size ns with ms in the control group, SEs(t̂C) =
n2
s(1 −ms/ns)(s

2
C(ŷi0) + AICadj)/ms where the variance of the ŷi0 among

the controls is calculated as s2C(x) =
∑

i∈C,s(xs− x̄s)
2/(ms−1). The AICadj

term follows Hastie, Tibshirani and Friedman (2009, §7.26) where the ad-
justment represents an estimate of the error of extrapolation from the control
group (or training set) to the whole population which varies across randomiza-
tions and models. To represent error of extrapolation (which ought to inflate
the variation of predictions beyond than expected from randomization itself)
Hastie, Tibshirani and Friedman (2009, §7.26) suggest an analytic calculation
of adj = 2∗(d/m)∗σ2

l , where d is the “effective model size” or an estimate of
degrees of freedom (here the number of non-zero coefficients in the β vector
above), and σ2

l is the mean-squared error from a low bias model (i.e. a very
saturated and unpenalized model). The overall approximate standard error is
the simple sum across sets as we would use in a block-randomized experiment
or stratified finite-population sampling plan — ŜE(t̂C) =

∑S
s=1 SEs(t̂C,s).

3. To further penalize the model search, we multiple this standard error by the
quantile of a bootstrapped distribution of t-statistics (i.e. Produce the studen-
tized bootstrap distribution of t̂C .) Here is that procedure:

(a) Draw a bootstrap sample from each stratum.

(b) repeat B times to get B versions of the total and SE for each model.

(c) Form a studentized statistic for each iteration, b, of the bootstrap: zb =
(t̂C,b − t̂C)/ŜE(t̂C,b). The distribution of the zb is the reference dis-
tribution for the test. The quantiles of this distribution, say, z∗α/2 for the
value of z at the α/2 quantile, provides more accurate approximations to
the t-distribution after model search than appealing to the t-distribution
directly.
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(d) A bootstrap-t or studentized bootstrap 100(1−α)% CI for t̂C has a lower
bound of t̂C − z∗1−α/2ŜE(t̂C and an upper bound of t̂C − z∗α/2ŜE(t̂C .
That is, the bootstrap procedure is only used to calculate the quantiles
of the reference distribution, not the standard error (which we already
know from the survey sampling theory of estimators of finite population
totals).

4. Assess power. This process would yield as many CIs as models in yhatmat.
We use the cdf of each bootstrap distribution to calculate power analogously
to the way one would use the non-central t-distribution to calculate the power
of a t-test.

4.1.3 Verification of error rate

After we choose the best model, we add a verification step that may not be strictly
necessary for all applications. We can assess the overfitting/coverage/error-rate prob-
lem by then mounting another simulation study using the real data but permuting the
treatment assignment (within sets).

1. Re-shuffle treatment many times (usually 1000 times), each time calculating
a bootstrap-t CI following B bootstrap iterations.

2. Verify that the CI contains A = 0 at least 95% of the simulations.

4.1.4 Summary

In summary, we suggest that we can use covariates to increase the precision by which
we assess causal effects. Here we began with a causal model where each subject has
his or her own additive causal effect, but we focus attention on the sum of these
effects. In large samples with outcomes that are not terribly skewed and where ran-
domization ensures that covariates relate to controls more or less as they would to
treated units, then we can calculate confidence intervals by relying on theory that
suggests that (1) that the randomization distribution under the null hypothesis will
be governed by a central limit theorem Hansen and Bowers (2009) and (2) that co-
variance adjustment where β varies will approximate covariance adjustment where
β is fixed across randomizations. Moreover, because we include inspection of the
operating characteristics of our intervals as a part of our model search process, we
will be directly assessing the performance of these approximations along the way.

4.2 Simulation Studies of Known Models

Consider the following two outcomes shown in Figure 2. We created these outcomes
using the following procedure:
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1. Generate stratum specific means of one of the survey outcomes ( “hours helped
others in the last four weeks”), where the 20 strata, are UK administrative units
crossed by gender of the respondent.

2. The simulated outcome is the stratum specific mean outcome plus a linear
function of respondent’s age and household income and an error term. The
Normal outcome has an error term drawn from a normal distribution with the
standard deviation set to the standard deviation of the “hours helped others”
variable. Specifically, yi = β0j + β1Agei + β2Incomei + ei where ei ∼
N(0, σ2) for the Normal outcome and ei ∼ πiGeom(.7)+(1−πi)Geom(.07)
where πi ∼ Bernoulli(.5) for the Skewed and Zero-Inflated outcome (which
also collapses all negative values to zero). The linear model specified β1 = 16
and β2 = −12.
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Figure 2: Distributions of simulated outcomes. Each outcome is non-negative integer and
is a known linear additive function of respondent age and household income and twenty
strata specific fixed effects (where strata are defined by administrative unit and gender of the
respondent). The R2 of the known model for the Normal outcome and Skewed outcome are
0.79 and 0.55 respectively.

These simulated outcomes are useful because they are created using observed data,
relate to observed covariates, and have the same number of observations as the real
data, yet allow us a test of our procedures: if, for example, our procedure fails to
control Type I error rates on the Normal-generated outcome, we would imagine that
we have a coding error.

13



Figure 3 shows the result of following our covariance adjustment method. The thin
black line shows the unadjusted power curve. The thick black line shows the im-
proved power that would arise if we knew the true covariance adjustment model.
Since, we rarely know the true model by which covariates predict outcomes we
started the model selection algorithm with a model containing 146 terms — includ-
ing Age and Income as multi-term natural cubic regression spline bases rather than
as the true linear functions. Could we produce confidence intervals as tight as those
arising from the true model even when we did not include the true model as a subset
of the test model? The red lines in Figure 3 show that the answer is ‘almost’.
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Figure 3: Power curves for α = .05 for assessments of A0. When A0 = 0, no more than
5% of p-values are greater than .05 (gray dashed horizontal line). Thin black lines show
the power curve for the unadjusted tests, the thick black lines show that power improves if
one knows the true model relating covariates to outcomes, red lines show the power curves
arising from model selection starting with a model containing 146 terms.

We also verified the validity of the tests based on the machine-generated covariance
adjustment strategy: the proportion of p-value below 0.05 is shown with the black
dots at A = 0. A well-operating test should reject the truth no more than 5% of the
time if the pre-specified error rate is α = 0.05. In this case, we see that our approach
is conservative and thus valid.

4.2.1 Key Features and Details of the Algorithm

In simulated data we showed that our model selection procedure delivers a model
that operates in almost the same way that the true model operates. We should note
that we made no specific assumptions about the outcomes here — the integer valued
zero-inflated and skewed-outcome, for example, is manifestly not-normal.

Other choices of machine learner may be faster or more convenient. The key is to
have a relatively small number of tuning parameters for optimization: for each com-
bination of values of tuning parameters, we assess the Type I error rate and power
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against some alternative hypothesis and the best set of tuning parameters maximizes
power while keeping the coverage of the confidence interval correct. Thus, one
should not read this paper as advocating our particular adaptive elastic net machine
learner. Rather, this paper should make one ask what kinds of machine learners
and/or search procedures would be best given the different applications that politi-
cal scientists confront.

4.3 Real Outcomes

Here we show that our approach improved the power of statistical inferences using
real outcomes.

Figure 4 compares the coverage of the confidence intervals between unadjusted and
the selected covariance adjusted confidence intervals using as input a set of 2634
covariate terms. In each case, the covariance adjusted model has higher power for
alternatives distant from the truth, and is conservative for tests of and near the truth
(set to be A = 0 for the purpose of covariance adjustment finding).

−1000 −500 0 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Community Efficicacy

Hypotheses (A)

P
ro

po
rt

io
n 

p<
.0

5

No Adjustment
Best Found Model

●

−500 0 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trust In Institutions

Hypotheses (A)

P
ro

po
rt

io
n 

p<
.0

5

No Adjustment
Best Found Model

●

−400 −200 0 200 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Close Knit Neighborhood

Hypotheses (A)

P
ro

po
rt

io
n 

p<
.0

5

No Adjustment
Best Found Model

●

Figure 4: Real Outcomes: Power curves for α = .05 for assessments of A0. When A0 = 0,
no more than 5% of p-values are greater than .05 (gray horizontal line) or within simulation
error of .05. Black lines show the power curve for the unadjusted tests, red lines show the
power curves arising from choosing the most powerful model using a set of 2634 terms
using the elastic net fitting procedure on the control group only. Black dots at A = 0 show
simulation based false rejection rates for the chosen covariance adjustment model.

We see that the covariance adjusted confidence intervals have more power to exclude
false hypotheses than the unadjusted tests — although this difference is slight. That
is, this plot suggests that we would gain some power, but it ought not be as large as
the power that we gained using the simulated data.

4.3.1 Confidence Intervals

Table 1 shows the confidence intervals for the attributable effect that arise from
applying this method to the 2005 UK Home Office simulated and real outcomes.
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A A per 100 Treated Adj Width/Raw Width
Community Efficacy (-400,420) (-12,13) 1.1

Neighborhood Cohesion (-220,-44) (-6.7,-1.3) 0.51
Trust Institutions (-450,-96) (-13,-2.9) 0.58

Sim. Normal Outcome (-2600,2900) (-77,88) 0.52
Sim. ZIF Outcome (-570,3500) (-17,100) 0.57

Table 1: 95% Confidence intervals for the causal effect of bombings on the number of pos-
itive answers among the those interviewed after the bombing. Intervals reflect the best co-
variance adjustment model found during the tuning parameter search. Numbers shown to
two significant digits.

The rightmost column compares the widths of the confidence intervals calculated
with and without adjustment. In four of the five cases, we see an improvement of
between 40 and 50% (ratios from about .6 to about .5). We did not see this improve-
ment for community efficacy, although we speculate that 1.1 signals merely lack of
improvement and simulation error and not decrement.

Using this approach we see that, of the roughly 3300 people interviewed after the
bombing, we see that of the 3300 people interviewed after the bombing, we saw
6100 responses in favor of neighborhood cohesiveness. If these people had been in-
terviewed before the bombing, we would have expected as many as 220 to 44 more
responses in favor of neighborhood cohesiveness. That is, for every 100 people in-
terviewed after the bombing, we should not be surprised to see between 7 and 1
more cohesive responses after the bombing. The effect of the bombing on com-
munity efficacy was weak: for every 100 people interviewed after the bombing, we
would easily have seen about -12 fewer trusting responses to about 13 more trusting
responses.

4.3.2 Summary

The overall lesson of this section is that one may use prognostic covariates to increase
the precision of statistical inferences about causal inferences without repeatedly re-
examining the causal effect itself. Our strategy confines attention to the control
group and makes use of machine learning approaches to search for the best covari-
ance adjustment specification (where ”best” means ”most powerful while maintain-
ing nominal Type I error”).

5 Discussion and Conclusion

A noisy outcome can mask treatment effects. If we can remove from the outcome
variation unrelated to the treatment, then we can enhance the precision in our as-
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sessments of causal models. However, common practice in analyzing experiments
risks seemingly significant results appearing by chance because of the process of
hunting for a statistically powerful covariance adjustment specification while testing
hypotheses about the treatment effect itself. The newer practice of pre-registering
analyses will help maintain the error rates of the statistical tests used in experiments
— by declaring in advance that one will use a set of variables in a certain way, one is
able to execute one test with a known false rejection rate. However, the newer prac-
tice will probably leave power on the table by ignoring the relationships occurring
within any given dataset. The noise in an outcome arises, in part, from idiosyncratic
processes within a given moment of data collection (what is often called the “natu-
ral variation” in the outcome): even if a covariate tends to be strongly related to an
outcome in general, it may or may not be strongly prognostic for that outcome in a
given dataset — and it is this strength of prediction which determines it’s utility in
increasing the precision of our confidence intervals.

Previous work has shown that linear models can play a role as noise-removers with-
out requiring that they play a role as treatment-effect assessors (Hansen and Bow-
ers, 2009; Rosenbaum, 2002b) but that work raises a new question: how should we
specify our linear model? That is, given a list of plausible prognostic covariates, we
might wonder which particular combination of terms is best at predicting the out-
come under control. So, we would like a way to select a model and/or variables in
a principled fashion but also in a way that continues to enhance precision without
impugning the validity of the statistical inference.

In this paper we have demonstrated a way to use only data from the control group to
train a machine learning algorithm. We used the elastic net algorithm in this paper,
but any other such model can be used.14

How would we know when we have selected a useful model specification? Finding
an excellent predictive model does not guarantee precise statistical inference about
causal models. In the extreme case, one could have a model which removes nearly all
of the variation from the outcome, leaving no variation left for the treatment itself.
We discovered that the common methods of tuning parameter selection in machine
learning (mean squared error targeted k-fold cross-validation) tended to overfit the
control group and thus produce invalid statistical tests. In this paper we advocate
power analysis verified by false rejection rate error evaluation for tuning parameter
selection in covariance adjustment specification searches for experiments.

Our application to the UK 2005 Home Office Survey demonstrated statistical infer-
ence for a causal quantity, the attributable effect, that is well suited to binary and
count data. We produced confidence intervals for the attributable effect without re-
quiring any model of the probability generating process of the observed outcomes.
Rather than use a negative binomial model for one outcome and a Poisson model for

14One could even learn from the Super Learner ideas of Van der Laan and Rose (2011), in which
one may fit many different models to produce an ensemble prediction (see Grimmer on ensemble
prediction in machine learning).
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another, our approach allows us to treat all count and binary outcomes in a unified
framework that derives from a simple and flexible individual specific causal model.

We did this work by taking advantage first and foremost of the ability to separate
statistical inference from other analysis work that is often delegated to the linear
model. First, without looking at outcomes, we bolstered our argument in that the
London Bombings of July 2005 could be seen as a part of a natural experiment
within the UK 2005 Home Office Survey by creating a stratified research design and
by providing some evidence to show that our design cannot be distinguished from an
equivalent randomized experiment. Second, we did look at outcomes, but only in the
control group, and we changed common practice in machine learning by choosing
tuning parameters based on power and size of tests. Third, our statistical inference
for causal effects occurred only after the first two modules had been completed.
Thus, our method side-steps worries about multiple testing while also enhancing
precision. Because we verified that our confidence intervals have correct coverage
as a part of the process, we could provide some evidence that this step in the process
was valid as well as powerful.
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Appendix A The 2005 UK Home Office Survey as a
natural experiment

The survey was designed to be a nationally representative probability sample. The
order of interviews within the survey, however, was not random. Figure 5 shows
the counts of subjects interviewed before and after the London bombings, grouped
by the 10 administrative regions used for sampling. While the overall survey was
administered to a random sample of the population, the implementation of survey
varied greatly in which regions were most heavily interviewed before and after the
bombing. For example, while about half of the Londoners were interviewed be-
fore the bombing, most of the respondents in Wales were interviewed before the
bombing. Naive estimates of the bombing’s effects by compared volunteering be-
fore before-vs-after may simply be estimates of the effect of living in London instead
of Wales.
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Figure 5: The counts of respondents interviewed before and after the London bombings,
grouped by the governmental regions used for sampling and organization of the fieldwork
for the 2005 Home Office survey across the UK. While the overall survey was designed to
be a representative sample of the population, the order of the interviews during the sampling
period was not uniform.

Individual characteristics may also influence which citizens are willing to answer a
survey. If the bombing increased civic participation among those predisposed to par-
ticipate, then such people might have been easier to reach and interview before the
bombing compared to after the bombing. If people (or the survey interviewers) sys-
tematically tried to include people in the survey on the basis of their predicted or past
civic activity, then pre-vs-post comparisons will tell us more about the kinds of peo-
ple who wanted to be interviewed at a particular moment rather than about an effect
of the bombings. As with the regional comparisons, we can assess whether the kinds
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of people who were interviewed before the survey differed from those interviewed
after the survey in terms of variables that might confound pre-vs-post differences.
The leftmost box plot in Figure 6 plots the standardized mean differences across
many covariates for pre and post bombing respondents. With many differences in
excess of 0.05 pooled standard deviations (positive or negative), this plot suggests
that the kinds of people interviewed before the bombing differed from the kinds of
people interviewed after the bombing. However, the range of this plot suggests that
the people interviewed before-vs-after the bombing were quite similar in general —
no differences were more extreme than about .15 standard deviations. If we assessed
differences between respondents using another cut point (say, differences between
people living in London versus Wales, or differences between Muslims and Chris-
tians) we would see differences well in excess of 2 standard deviations.
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Figure 6: Covariate similarity assessments for 140 covariate terms before versus after the
London 2005 bombings. Left panel shows difference in proportions or means for binary
and continuous covariates respectively. The p-value for the Hansen and Bowers (2008) d2
omnibus balance test is reported in the x-axis labels. The comparison is between unadjusted
assessments, assessments conditional on gender and governmental region of the country
(making 20 strata), and assessments conditional on those strata within a window of 2 weeks
before the bombing and 9 after the bombing.

Is a difference of .15 standard deviations large? In frequentist statistics, we do not
know how to answer questions about “large” without also asking, “compared to
what?” What standard ought to govern answers to this question? In this paper we use
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what we consider to be a minimal standard: the equivalent randomized experiment.
That is, we could ask, “If there were no systematic relationship between this covari-
ate and the timing of the bombing such as the relationship that we would expect from
a randomized experiment, how strange would it be to see a difference of .15 standard
deviations?” If it would be very strange to see a difference of .15 standard deviations
from the perspective of a randomized experiment, then we suspect that comparisons
pre-vs-post bombing will not provide the clear interpretable comparisons offered by
a randomized experiment.15 If differences of .15 standard deviations would be typ-
ical of a randomized experiment then, we know that the confidence interval for our
outcome comparisons will be large compared to the potential confounding offered
by this one covariate Hansen (2008); Bowers (2011).

Now, although we could answer this question about one covariate here we have cho-
sen to inspect balance on 140 covariates. In practice, of course, even a randomized
experiment will not guarantee that all variables will be perfectly balanced. And it
would be reasonable to see some p-values that are small merely through chance:
here we would expect to see 7 p-values less than .05, and 1.4 less than .01. Hansen
and Bowers (2008) proposed to assess the imbalance across all covariates and their
correlations using a test statistic summarizing the entire set of mean differences as-
sessed: they represent the overall balance of the sample with a statistic, d2, which
will be small when the data when the data are incongruent with the hypothesis of
no systematic relation and large when data could easily have emerged when no sys-
tematic relationship exists. Figure 6 also shows the p-value for a χ2 based on the d2
statistic.

Given fact that the bombing occurred without warning, and that our covariates do
not look so imbalanced in substantive terms (even if the p-value on the omnibus
test is very small because of the large sample size), we proceed here in the simplest
possible way to create a research design: by simply grouping our respondents into
homogeneous groups. If the within-group differences are small, we have the analog
of a block-randomized experiment. We begin by stratifying by region (because the
survey fieldwork was organized by region) and gender (because we know that civic
engagement and willingness to be interviewed differ between men and women in
places like the USA and UK). The second column of Figure 6 shows the distribution
of differences after stratifying this way. While the spread of imbalances decreases,
the omnibus test of balance still indicates that our data differ from what we would
expect from an equivalently blocked randomized experiment. In order to further
constrain our data, we restrict attention to a window of weeks around the time of the
bombing. While the original survey was conducted over a 30 period, we searched
over all small windows of time to find that period that had the highest p-value on
our d2 test, still stratifying on region and gender. A window of 2 weeks before the
bombing to 9 after the bombing provided a dataset that was well balanced on the
measured covariates, at the cost of sample size. While the original survey included

15Kinder and Palfrey (1993) cite Campbell and Stanley (1966) to provide us with the idea that the
point of an experiment is to produce clearly interpretable comparisons.
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14078 respondents, after shrinking the window 6451 subjects remain.
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Appendix B Outcome Questions

Figure 7 shows the distribution of the number of positive responses to the outcome
questions compared before and after the bombing of July 7, 2005.
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Figure 7: Perceptions of social cohesion and trust in institutions for respondents interviewed
in the 2 weeks before the London Bombing of July 7, 2005 (npre = 1195) in the UK Home
Office Survey 2005.

Appendix B.1 Trust in Institutions

• How much do you trust the police? [PTPolc] (1) A lot, (2) A fair amount, (3)
Not very much, (4) Not at all

• How much do you trust the Courts (Magistrates & Crown Courts) [PTCrt]

• How much do you trust Parliament [PTParl]

• How much do you trust your local council? [PTCncl]

The trust in institutions variable that we use is the number of ”a lot” answers.

Appendix B.2 Community Efficacy

• If a group of local children were playing truant from school and hanging
around on a street corner, how likely is it that people in your neighbourhood
would do something about it? [STruant]

(1) Very likely, (2) Likely, (3) Unlikely, (4) Very unlikely, (5) Don’t know

• If some children were spray-painting graffiti on a local building, how likely is
it that people in your neighbourhood would do something about it? [SGraff]
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• If there was a fight near your home and someone was being beaten up or threat-
ened, how likely is it that people in your neighbourhood would do something
about it? [SFight]

• If a child was being rude to an adult, how likely is it that people in your neigh-
bourhood would tell that child off? [SRude]

• How likely is it that people in your neighbourhood would participate if they
were asked by a local organisation to help solve a community problem? [SProb]

The community efficacy variables is the number of ”Very likely” or ”Likely” re-
sponses

Appendix B.3 Neighborhood Cohesion

• People in this neighbourhood are willing to help their neighbours? [SHelp] (1)
Strongly agree, (2) Agree (3) Disagree (4) Strongly disagree (5) Don’t know

• This is a close-knit neighbourhood? [SClose]

• People in this neighbourhood do not share the same values? [SValue]

The neighborhood cohesion variable is the number of ”Strongly agree” or ”Agree”
responses.
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