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Abstract

Natural experiments provide one means for credibly estimating causal effects with
observational data. The instrumental variable (IV) method is often applied to natural
experiment reflecting a belief that combining the power of natural random assignment
with an instrumental variable approach will solve many of the problems endemic to
observational data. While IV analysis can be quite powerful, they also rest on a series
of strong assumptions that may not be credible within a specific natural experiment.
Here, we highlight how the bias from weak instruments is amplified when instruments
are not as-if randomly assigned. We demonstrate how using an IV estimator based on
matching and randomization inference can both correct for departures from as-if ran-
dom assignment and strengthen the instrument. Specifically, we combine a matching
algorithm with a reverse caliper and penalties to strengthen the instrument within a
subset of the overall study population. We also demonstrate how researchers can probe
the random assignment of the instrument assumption with a sensitivity analysis. We
provide substantive examples of the proposed approach with a reevaluation and exten-
sion of a paper that uses rainfall as an instrument for voter turnout in U.S. counties
(Hansford and Gomez 2010).

While randomized experiments have become prominent in political science, the discipline

is replete with examples where experiments are infeasible. When experimentation is not

possible, one alternative is to search for “natural experiments” where some intervention is

thought to occur in an as-if random fashion, thus approximating a randomized experiment.

Analysts search for such “gifts of nature” hoping to estimate unbiased effects (Rosenzweig

and Wolpin 2000, pg. 872), and the estimates from natural experiments are often viewed as

a close second best to a true randomized experiment (Dunning 2010).
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There is much to be offered by natural experiments where some units obtain treatment

and other are denied treatment in some haphazard manner. The difficulty, of course, is that

haphazard assignment to treatment if often a far cry from a randomized experiment where

randomization is a known fact. In the application we address below, we exploit rainfall

patterns. While these patterns are certainly haphazard on any given day, they are also not

randomly assigned in a way that the probability of both rain and sunny skies on election

day is equal for all voters.

Due to the haphazard nature of treatment assignment, natural experiments often need

support from statistical methods. The instrumental variables (IV) method is one statistical

technique often used to exploit natural experiments. However, it is well known that the

IV method has a number of strong assumptions that must hold for valid causal inferences

(Angrist, Imbens and Rubin 1996). In this paper, we highlight how two of these assumptions

can interact in a way that forms a particular threat to the use of IV with natural experiments.

Specifically, we review how the problems caused by weak instruments are exacerbated when

assignment of the instrument is not as-if random, which is common natural experiments

(Small and Rosenbaum 2008). Next, we introduce a particular form of matching that allows

us to pair units that are close on observables but far apart in terms of the encouragement

induced by the instrument (Baiocchi et al. 2010). This procedure produces matches where

assignment of the instrument should be ignorable with respect to observables but the effect of

the instrument on the treatment should be as strong as possible, consequently strengthening

the effect of the instrument. We apply this method to a study where rainfall is used as an

instrument for turnout in the 2000 presidential election. We show that by selecting a subset

of the units through matching, we can strengthen IV estimates from natural experiments

and reduce sensitivity to bias from hidden confounders.
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1 Building Stronger Instruments

We begin with a brief overview of instrumental variables as applied to natural experiments

and then focus on two of the IV assumptions and how they can interact. We begin with a

discussion of encouragement designs, which provide a template for many natural experiments.

1.1 IV and Its Assumptions

In the randomized encouragement design, some subjects are randomly encouraged to ac-

cept treatment, but some subset of the subjects fail to comply with the encouragement. IV

provides an estimate of the treatment effect for those who take the treatment. The canon-

ical example of the encouragement design is an experiment where some participants are

encouraged to exercise. In this design, the instrument is encouragement to exercise, which

is randomly assigned to study participants, the treatment is exercise, and the outcome of

interest is lung function. Some subjects are randomly encouraged to exercise, but only some

of those encouraged actually comply. Later all participants are measured on the outcome.

The method of instrumental variables can be used to estimate the effect of the treatment,

exercise, as opposed to the effect of encouragement (Angrist, Imbens and Rubin 1996). The

IV estimate is often referred to as the complier average causal effect (CACE).

As applied to natural experiments, instrumental variable analysis is meant to mimic

the randomized encouragement design (Holland 1988). For the IV method to provide valid

causal inferences with natural experiments, five assumptions outlined by Angrist, Imbens

and Rubin (1996) must hold.1 These being: (1) random assignment of instrument status;

(2) stable unit treatment value assumption; (3) no direct effect of instrument on outcome

also known as the exclusion restriction; (4) monotonicity; and (5) no weak instruments.

Below, we focus on assumptions 1 and 5 and focus on recent research which outlines how

these two assumptions can interact particularly in the context of natural experiments.

Assumption (1) says that assignment of the instrument must be as-if random. For exam-

1See Sovey and Green (2011) for a more detailed introduction to IV analysis assumptions.
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ple, in the encouragement design example, so long as the investigator assigns encouragement

status through some random mechanism, such as a coin flip, this assumption will hold. In

natural experiments, it is often unclear that the assumption of random assignment of the in-

strument holds since assignment to encouragement is not done in the controlled environment

of a randomized experiment, but instead happens through some natural, haphazard process.

It is for this reason that analysts should report whether encouraged and non-encouraged

units are balanced with respect to observed covariates. A lack of balance would suggest

that units with a particular covariate profile would be more likely to be assigned the instru-

ment and serves as evidence that this assumption may have been violated (Dunning 2009;

Sovey and Green 2011). For any natural experiment, the possibility always remains that

the instrument is not randomly assigned. Analysts can use a sensitivity analysis to observe

whether study conclusions are sensitive to this assumption (Rosenbaum 2010, 2002b, ch. 5),

but unfortunately such sensitivity analyses are rare.

Next we focus on assumption (5) which states that analysts must avoid the use of a

weak instrument. An instrument is said to be weak if manipulation of the instrument has

little effect on treatment (Staiger and Stock 1997). In the encouragement design example,

the instrument is weak if few of those encouraged to exercise actually exercise. The most

common method of estimation used with instrumental variables is two-stage least squares

(2SLS), and, as is well known, 2SLS can produce highly misleading inferences in the presence

of weak instruments (Bound, Jaeger and Baker 1995). IV estimation with 2SLS takes identi-

fication of the IV estimand as given, and asymptotic approximations for standard errors and

confidence intervals can incorrectly suggest strong treatment effects even when effects are

nonexistent. Alternative methods of estimation are not prone to this problem. Rosenbaum

(2005b) outlines an IV estimator based on permutation inference, where if the instrument is

weak the confidence intervals will appropriately detect weak or non-existent identification.

See Betz (2013) for one recent application of this IV estimator in political science.

Assumptions (1) and (5) are well known. What is less appreciated is that violations
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of these assumptions can interact to further hinder one’s ability to make correct inferences

with IV. Small and Rosenbaum (2008) prove important links between weak instruments

and whether instrument status is as-if randomly assigned. If the instrument is randomly

assigned but is weak, inferences from 2SLS can be misleading; though, with enough data,

consistent estimates are possible. That is, with a weak instrument if Assummption (1)

holds, the power to detect causal effects will be low. However, the key problem highlighted

by Small and Rosenbaum (2008) is that even in a study with a very large sample size, a

weak instrument is very sensitive to whether the instrument is as-if randomly assigned. In

other words, when the instrument is weak even small departures from Assumption (1) can

produce very large biases no matter how large the sample size. Small and Rosenbaum (2008)

also prove that a strong instrument is more robust to departures from random assignment

even in smaller sample sizes. Thus they show that if Assumption (1) does not hold, a smaller

study with a stronger instrument is much less sensitive to bias than a weak instrument used

in a much larger study.

This result has important consequences for applications of IV estimators to natural ex-

periments. In a natural experiment, given that assignment to the instrument is haphazard

instead of random, we must assume that deviations from Assumption (1) are common if not

the rule. This implies that weak instruments pose an important threat to using IV in the

analysis of natural experiments. Next, we present a design-based strategy for dealing with

both issues.

1.2 Instrumental Variable Estimated via Matching

Our strategy relies on IV estimation via matching and randomization inference (Rosenbaum

1996, 2002a). Below, we begin with a formal description of IV estimation with matching

and randomization inference. As we highlight below, IV with matching and randomization

inference has important advantages over IV estimation via 2SLS.

The notation we introduce is for a paired randomized encouragement design. It is this
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experimental design that IV with matching mimics. There are I matched pairs, i = 1, . . . , I,

and the units within matched pairs are denoted with j ∈ {1, 2}. We form these pairs

based on observed covariates, xij, which are measured before assignment to the instrument.

After matching, we assume xi1 = xi2 for i = 1, . . . , I. One subject in each matched pair is

encouraged to accept a high dose of treatment, which we denote as Zij = 1, and the other

subject is not encouraged denoted by Zij = 0, so that Zi1 + Zi2 = 1 for i = 1, . . . , I. If

Zij = 1 the unit is encouraged and subject ij receives treatment at dose dT ij and if Zij = 0

subject ij receives treatment at dose dCij. Consistent with the potential outcomes framework

(Neyman 1923; Rubin 1974), these doses, however, are potential quantities which implies that

we do not observe the pair (dT ij,dCij). We do observe the dose actually received, which is

Dij = ZijdT ij +(1−Zij)dCij. Each subject also has two potential responses which we denote

as rT ij if Zij = 1 or rCij if Zij = 0. As with the doses, we do not observe the pair of potential

outcomes: (rT ij, rCij), but we do observe the responses: Rij = ZijrT ij + (1− Zij)rCij.

Following Rosenbaum (1996), we assume that the effect of encouragement on response is

proportional to its effect on the treatment dose received,

rT ij − rCij = β(dT ij − dCij). (1)

If this model is true then observed response is related to observed dose through the following

equation

Rij − βDij = rT ij − βdT ij = rCij − βdCij. (2)

Under this model of effects, the response will take the same value regardless of whether or not

Zij = 1 or Zij = 0 in each pair. This implies that this model of effects satisfies the exclusion

restriction. Informally, the exclusion restriction implies that instrument assignment Zij is

related to the observed response Rij = ZijrT ij + (1− Zij)rCij only through realized dose of

the treatment Dij. That is true here since Rij − βDij is a constant that does not vary with

Zij.
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Given this model of effects, we wish to test whether the treatment is without effect,

estimate a point estimate, and form a confidence interval for this point estimate. Under

randomization inference, we can calculate these quantities by testing various hypotheses

about β using the following set of null hypotheses H0 : β = β0. We obtain exact inferences

about β using the observed quantity Rij − β0Dij = Wi as a set of adjusted responses.

To test the sharp null hypothesis, we test H0 : β = β0, with β0 = 0 by ranking |Wi| from

1 to I. We calculate Wilcoxon’s signed rank statistic, Wβ0 , as the sum of the ranks for which

Wi > 0. If ties occur, average ranks are used as if the ranks had differed by a small amount.

Under H0 : β = β0, if xi1 = xi2 for each i, and there are no unobserved confounders related

to the probability of treatment, then the probability of assignment to the instrument is 1/2

independently within each pair. If this is true, we can compare Wβ0 to the randomization

distribution for Wilcoxon’s signed rank statistic and this provides the exact p-value for a

test of the sharp null hypothesis for β0 = 0.

A point estimate for β is obtained using the method of Hodges and Lehmann (1963).

The estimate of β is the value of β0 such that Wilcoxon’s signed rank statistic is as close as

possible to its null expectation, I(I+1)/4. Intuitively, the point estimate β̂ is the value of β0

such that Wβ0 equals I(I+ 1)/4 when Wβ0 is computed from Rij−β0Dij. It is not necessary

to use the signed-rank statistic. Rosenbaum (2005b) shows that if we use the sample mean

of Wi this yields

β̂ =

∑I
i=1(2Zi1 − 1)(Ri1 −Ri2)∑I
i=1(2Zi1 − 1)(Di1 −Di2)

,

which is the well-known Wald (1940) estimator.

A 95% confidence interval for the treatment effect is formed by testing a series of hy-

potheses H0 : β = β0 and retaining the set of values of β0 not rejected at the 5% level. This

is equivalent to inverting the test for β (Rosenbaum 2002b).

One advantage of applying randomization inference to IV becomes apparent with interval

estimation when instruments are weak. An instrument is strong if dT ij is considerably larger

than dCij for most or all individuals ij. An instrument is weak if dT ij is close to or equal
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to dCij for most individuals ij. In other words, an instrument is weak instrument when

most units ignore the encouragement to take the treatment. When the instrument is weak,

two-stage least squares often provides incorrect inferences where 95% confidence intervals

may over cover 85% of the time (Bound, Jaeger and Baker 1995). The confidence intervals

from randomization inference have exact 95% coverage regardless of whether the instrument

is strong or weak (Imbens and Rosenbaum 2005). Under randomization inference, if the

instrument is weak, the interval becomes longer and perhaps even infinite in length. In this

case, a long confidence interval is a warning that the instrument provides little information

about the treatment. In the context of a natural experiment, a long confidence interval also

implies that special attention should be paid to whether the instrument is balanced.

1.3 Sensitivity Analysis

The nonparametric IV estimator is based on the assumption that assignment to encourage-

ment, Zij = 1 or Zij = 0, is constant within pairs as if encouragement status were determined

by flipping a coin. When we suspect assignment of the instrument is not fully as-if random,

a sensitivity analysis can be performed to assess how departures from random assignment of

the instrument might alter our conclusions (Rosenbaum 2002b).

For two subjects, i and j matched so that observed covariates are identical, xik = xij, we

assume that probability of treatment is constant within matched pairs. However, subjects

may differ in the probability of treatment because they differ in terms of some unobserved

covariate. Let πj denote the probability of treatment for unit j. We may characterize this

probability with a logit model linking the probability of treatment to observed covariates

xj and an unobserved binary covariate uj: log{πj/(1− πj)} = φ(xj) + γuj where φ(·) is an

unknown function. Using this model, we can express how two matched units might differ

in terms of their probability of treatment as a function of u. For two units, ik and ij with

xik = xij, we characterize how they may differ in their odds of treatment with the model

above rewritten as: πij(1 − πik)/πik(1 − πij) = exp{γ(uij − uik)} (Rosenbaum 2002b, sec.
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4.2). Now we write exp(γ) = Γ, and if Γ = 1 for two matched units, then the units do not

differ in their odds of treatment as a function of the unobserved u.

We can vary the values of Γ systematically as a sensitivity parameter to probe whether

the IV estimate is sensitive to departures from random assignment of the instrument. For Γ

values greater than one, we can place bounds on quantities of interest from the IV estimator.

For example, consider the p-value for β̂. First, we assume Γ = 1 and apply randomization

inference. The resulting p-value is valid if there are no hidden confounders. In the sensitivity

analysis, we pick a range of Γ values and see at what value of Γ our p-value exceeds 0.05. For

example, if we find that the estimated p-value exceeds 0.05 when Γ = 1.05 this suggest that

a very slight departure from randomization of the instrument might overturn our study. If,

on the other hand, we find that the p-value from our study exceeds 0.05 when Γ is greater

than say 4, this suggests that unless the departure from randomization of the instrument

is fairly substantial our conclusions would still hold. That is, the odds of treatment would

have to differ by a factor of 4 before our conclusions would be overturned. A sensitivity

analysis is especially important in the context of a natural experiment where assignment of

the instrument is haphazard and may not be as-if random. In the analysis, here, Γ becomes

an important outcome measure. Strengthening the instrument should make the IV estimate

less sensitive to bias from hidden confounders. As such, in the analyses that follow we

compare Γ values to see whether stronger instruments are associated with higher Γ values.

1.4 Strengthening Instruments Through Matching

Next, we demonstrate how we can alter the matching process to also create stronger instru-

ments. Thus far we have assumed that the encouragement, Zij, is binary. When the instru-

ment is binary, subjects are either encouraged or not, and there is no room to strengthen

the encouragement provided by the instrument. However, many instruments are continuous.

We now assume that the instrument is a continuous measure where higher values represent

a greater level of encouragement; i.e., a higher dose of the treatment is more likely for higher
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values of Zij. With a continuous instrument, we might imagine that the ideal matched pair

of subjects ik and il would have the following property xik = xil but Zik − Zil should be

large. That is, these units should be identical in terms of observed covariates but one of

the units is strongly encouraged to take a high dose of the treatment while the other is not.

Such a match ensures comparable units with a large difference in terms of encouragement

allowing for a strong instrument. How might we implement such a match?

This ideal match creates complications for typical matching algorithms that are applied

to data with identifiable treatment and control groups define by a binary indicator. With

a continuous instrument, clearly identifiable groups for the matches don’t exist. The most

obvious way to apply a standard matching method would be to divide the observations into

two groups based on some cutoff in the instrument. However, dividing the data in this way

requires an arbitrary choice about where to split units into the encouraged and unencouraged

groups. We can solve this problem with optimal nonbipartite matching (Greevy et al. 2004;

Lu et al. 2011). Nonbipartite matching can be used when the data are not explicitly divided

into treatment and control groups. Instead, all of the observations are pooled and matched

pairs are formed so that the sum of pairwise distances is minimized.

Baiocchi et al. (2010) demonstrate how to use nonbipartite matching to implement the

ideal IV match. We motivate their method through the concept of a reverse caliper. Caliper

matching is a method that attempts to avoid poor matches by imposing a tolerance on the

maximum distance between matched pairs (Cochran and Rubin 1973). For two subjects i

and j, let Pi and Pj be a score on a distance metric such as the propensity score. Under a

caliper, a match for subject i is selected only if ||Pi − Pj|| < Λ, where Λ is a pre-specified

tolerance. We can reverse the concept of a caliper and say a match for subject i is selected

only if ||Pi − Pj|| > Λ, where Λ remains a pre-specified tolerance. How might this help

us build stronger instruments? We use the reverse caliper in conjunction with matching to

find units that are similar on observables, but we only keep a matched pair if it satisfies the

reverse caliper such that the matched pair is very dissimilar in terms of the encouragement
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provided by the instrument.

To enforce the reverse caliper, we use penalties. We added a substantial penalty to the

discrepancy between any pair of units whose distance on the instrument differed by less

than Λ. Penalties are used to enforce compliance with a constraint whenever compliance

is possible, and also to minimize the extent of deviation from a constraint whenever strict

compliance is not possible. Thus the matching algorithm attempts to balance observables

subject to the constraint on instrument distance. More formally, let zkl denote the value

of the instrument for unit l in possible pair k, and zk1 − zk2, the distance between the

observations in the matched pair on the instrument. A distance penalty, pk, is defined as

pk =

 (zk1 − zk2)2 × c if zk1 − zk2 < Λ

0 otherwise
(3)

where Λ is some threshold pre-defined by the analyst. The penalty, pk, is defined such that

a smaller value of zk1− zk2 receives a larger penalty making those two units less likely to be

matched, while c scales the penalty to that of the distance matrix. See Rosenbaum (2010,

Sec. 8.4) for a discussion of penalties in matching.

To be fully effective, however, the penalized matching must also be combined with what

are known as “sinks” (Lu et al. 2001). Matching with penalties alone tends to produce

some matched pairs that are distant on the instrument but have suboptimal balance on

observables. To avoid such matches, we discard suboptimal pairs with sinks. To eliminate

e units that create the suboptimal matches, e sinks are added to the data before matching.

We define each sink so that it has a zero distance between each unit and an infinite distance

to all other sinks. This will create a distance matrix of size (2I + e)× (2I + e). The optimal

nonbipartite matching algorithm pairs e units to the e sinks in such a way to minimize the

total distance between the remaining I − e/2 pairs. That is by pairing a unit with a sink,

the algorithm removes the e units that would form the e set of poor matches. Thus the best

possible set of e units are removed from the matches.
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The matching algorithm, then, creates the optimal set of matched pairs that are similar

in terms of covariates but differ in levels of encouragement. Moreover, any matched units

for which it’s difficult to balance and increase distance on the instrument are excluded from

the study. This leads to a smaller study in hopes of strengthening the plausibility of the IV

analysis. This form of matching is consistent with efforts to focus on smaller homogeneous

subsets of the data because comparability is improved and sensitivity to unobserved bias is

lessened (Rosenbaum 2005a).

1.5 The Estimand

Anytime one analyzes a natural experiment, it is worth carefully considering the estimand:

the quantity being estimated. Often the estimand in a natural experiment may not be the

quantity of interest in a theory of politics (Sekhon and Titiunik 2012; Keele and Minozzi

2012). This is especially true when IV is applied to a natural experiment, since IV only

identifies what is typically know as the complier average causal effect (CACE) which is the

average causal effect among those who comply with the encouragement to the treatment

(Angrist, Imbens and Rubin 1996). Often this estimand is referred to as the local average

treatment effect (LATE). The strategy we use here further changes the estimand by increas-

ing the locality of the IV estimand. That is, we restrict the IV estimator to a subpopulation

that not only responds to the encouragement but for whom encouragement is strong. In

short, our estimand is more local than the usual LATE. We argue that it is better to restrict

the analysis to units for whom we have greater confidence that identification holds. While

we may not be able to easily extrapolate our estimates to other populations, we argue that

interval validity comes first in the process of causal inference. There is no reason to worry

about extrapolation of effects when we have little confidence in the identification strategy.
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2 Application: Turnout and Democratic Vote Share in

the 2000 US Presidential Election

We demonstrate these techniques through an analysis of a long-running debate in the Amer-

ican politics literature: whether turnout affects election results. The question of interest

is whether higher levels of turnout would increase vote share for the Democratic party. Of

course, any estimates of the effect of turnout on vote share are subject to endogeneity. Hans-

ford and Gomez (2010) exploit a natural experiment created by rainfall patterns on election

day to overcome this problem. Based on evidence that rainfall depresses turnout (Gomez,

Hansford and Krause 2007), they use rainfall as an instrument for turnout. They find that

higher turnout does help Democratic candidates.2

Before, we turn to our analysis, we evaluate the plausibility of the IV assumptions in

this context focusing specifically on Assumptions (1) and (5). The design does fit the en-

couragement design paradigm, as rainfall discourages the treatment of voting. Moreover, the

exclusion restriction seems plausible. While the exclusion restriction is important, we focus

on Assumptions (1) and (5), which are often overlooked by analysts. For example, Hansford

and Gomez (2010) do not discuss whether assignment of the instrument is as-if random, and

they provide only a brief discussion of whether the instrument is weak or not.

We begin with a discussion of the as-if random status of rainfall. In their analysis,

Hansford and Gomez (2010) use deviations from average rainfall on election day as their

instrument. So the design studies whether unusually rainy weather discourages turnout. This

design decision bolsters Assumption (1) since relative amounts of rainfall is more likely to be

random than simple rainfall patterns, which are correlated with region and perhaps political

characteristics. As in many natural experiments, however, the validity of Assumption (1)

is hard to assess a priori, and we should rely on empirical evidence to judge the validity of

2Hansford and Gomez assess four different hypotheses related to turnout. For the purposes of this analysis,
we focus on whether increased turnout increases Democratic presidential candidate vote share. The other
three hypotheses tested by Hansford and Gomez include whether the size of this effect depends on the
partisan composition of the electorate, if turnout decreases incumbency vote share, and whether turnout
increases electoral volatility.
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this assumption. If rainfall is a valid instrument, we should expect that characteristics like

levels of education and income should be balanced across counties with unusual amounts

of rain on election day and those counties with normal precipitation patterns on election

day. As we demonstrate below, this is not the case, and we must adjust for covariate

imbalances. Moreover, since adjustments are required, we also conduct a sensitivity analysis

to understand whether small departures from random assignment of the instrument might

affect our conclusions.

Next, we ask whether the instrument is weak? Hansford and Gomez (2010) note that

rainfall seem unproblematic based on a weak instrument test where the F-statistic passes the

usual rule-of-thumb threshold of 10 (Sovey and Green 2011). However, careful evaluation

of the design reveals a flaw that suggests the rainfall instrument is actually weak. In the

design, unusual amounts of rain are thought to discourage turnout among Democrats. The

instrument is measured as the difference between rainfall on election data and the average

rainfall amounts for the county during the week of the election. This measure of rainfall de-

viations is, of course, two-sided. Some places experience more rain than is typical on election

day, while other places have better than average weather. The power of the instrument in

this design, however, stems from the discouragement provided by abnormally large amounts

of rain, not from drier than average weather. In the analysis, however, the measure used is

the raw measure of both positive and negative deviations. Why is this a concern? In the

original diagnosis on the problems caused by weak instruments, Bound, Jaeger and Baker

(1995) found that using randomly generated noise with no information about the treatment

as an instrument provided estimates that appeared to be identified. Thus one lesson from

that study is that additional variation in the instrument, even stochastic variation unrelated

to the treatment, may provide false identification. We contend that the extra variation in

the instrument created by the better than average weather may make this instrument appear

stronger than it really is.

To that end, we performed a reanalysis to understand whether using the full range of
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rainfall deviations may affect the weak instrument test. First, we replicated the weak in-

strument test results from the original analysis. We found the F-statistic from the weak

instruments test was 20.6 well above the rule-of-thumb threshold of 10. In a new analysis,

we altered the rainfall instrument such that counties with better than average weather on

election day were coded as zero, since we expect such weather patterns to provide little in

the way of discouragement to vote. We then performed a new weak instrument test using

the new version of the instrument. Now the F-statistic from the weak instruments test is 2.4

well below the usual threshold of 10. Our reanalysis suggests that the rainfall instrument is

relatively weak and the original test results may have been a function of the extra variation

provided by better than average weather. In short, for this application, rainfall patterns are

no as-if random and the instrument is weak. Next, we apply matching to increase balance

and strengthen the instrument.

2.1 County Level Analysis

We do not perform a complete reanalysis of Hansford and Gomez (2010). Instead, we restrict

our analysis to the 2000 presidential election. We chose the 2000 presidential election for

three reasons. First, we use a more recent election since it allows us to utilize a wider number

of covariates when we evaluate whether the rainfall instrument created as-if random status.

Second, we use 2000 presidential election since there was a large variation in rainfall on

election day that year. Finally, we think it is useful to restrict the matched county pairs

to a single year to reduce heterogeneity and bias from unobserved confounders. As in the

original paper, we also exclude Southern counties from the data to increase the comparability

between the original analysis and our analysis.3

We use the county-level data provided by Hansford and Gomez (2010) in their replication

data set. These data include election day rainfall measured relative to the average rainfall

around election day; presidential election turnout, measured as a percentage of votes cast for

3For the reasoning behind this, see their detailed discussion of the data (Hansford and Gomez 2010, pp.
273-276).
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presidential candidates divided by the voting age population; and the two-party vote share

for the Democratic presidential candidate. Overall, the data set includes more than 1900

counties across 36 US states.

In our analysis, we added several covariates that are likely to be related to turnout

and electoral outcomes. These covariates include the natural log of county population, the

proportion of black and Hispanic residents in the county, educational attainment measured

by the percentage of high school and college educated residents, the natural log of median

household income, and the county poverty rate. It is these covariates that should be balanced

if the rainfall instrument is as-if random.4 We might also consider whether turnout and vote

share in 1996 or 1998 were also balanced, but since these measures could be affected by

the instrument (rainfall in previous years) and treatment (turnout in previous elections), we

exclude measures of this type from the analysis.

Before the analysis, we first tested whether the assignment of rain on election day in 2000

produced as-if random conditions. We do that by determining whether the covariates were

balanced by rainfall patterns. All counties that experienced greater than normal rainfall were

considered part of the treated group and all other counties were considered to be the control.

There were 1233 counties (64% of the sample) in the treated group and 692 counties (36% of

the sample) in the control group. We then conducted balanced tests on the Census data. In

Table 1 for each covariate we report means, the standardized difference in means, and the p-

value from the Kolmogorov-Smirov (KS) test.5 We find that in fact, rainfall patterns in 2000

were not as-if random. While the means of some covariates are quite close, we see that treated

counties had lower levels of college education and income. For example, the percentage of

college educated residents was four percent lower in treated counties than in control counties.

As is often the case, however, simply examining means hides differences in other moments

of the distributions. We find in every case that the p-values from the KS test are below

0.001. Coupled with the fact that rainfall is a relatively weak instrument for turnout—the

4Summary statistics for all of the data used in this analysis are presented Appendix ??.
5Balance statistics reported calculated in R with the Matching package (Sekhon 2011).
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Table 1: Balance statistics for unmatched US covariates

Mean Mean Std. KS
treated control diff. p-vala

Rainfall deviation 0.34 −0.07 1.38 0.00
Population (log) 9.99 10.56 0.38 0.00
Percent African-American 0.02 0.03 0.18 0.00
Percent Hispanic 0.03 0.07 0.42 0.00
Percentage with High School Degree 0.80 0.82 0.24 0.00
Percentage with College Degree 0.16 0.20 0.59 0.00
Median Household Income (log) 10.45 10.52 0.30 0.00
Percentage Below Poverty Line 0.13 0.13 0.00 0.00

a Kolmogorov-Smirnov p-values calculated by with b = 5000 bootstrap
replications.

correlation between rainfall and turnout is 0.08 in 2000—it would be dangerous to make

inferences based on the standard 2SLS estimator. We now turn to a matching analysis that

attempts to remedy these issues.

In our analysis, we applied optimal nonbipartite matching to create two sets of matches.

In the first match, we simply attempted to balance observables, but we did not enforce any

minimum discrepancy on the matched pairs in terms of rainfall. In the second match, the

objective is to maximize balance, while also maximizing distance on the instrument. For

both matches, we calculated the pairwise distances between the counties included in the

sample. For our application we used a rank-based Mahalanobis distance metric, which is

robust to highly skewed variables. This produced a symmetric 1925× 1925 distance matrix.

To control for possible SUTVA violations across contiguous counties, we then applied a large

penalty for geographic proximity. With a large penalty for proximity, the algorithm will

avoid matches for contiguous counties if possible subject to minimizing imbalances on the

covariates.6

For the second match, we applied the reverse caliper through a penalty function to all

potential matched pairs where the distance on the instrument was less than a given threshold.

As we expected, maximizing distance on the instrument tended to worsen balance. To that

6The penalty was large enough that it basically precluded the possibility of matching contiguous counties.
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Figure 1: Balance on covariates and instrument: 1681 diagnostic matches for US county
data. Dashed vertical lines indicate 1, 2, and 3 standard deviations for the pairwise distance
on the instrument. Shading indicates the level of balance and the dot shows the parameter
values selected for further analysis.

end, we simultaneously introduced a number of sinks to counteract the negative impact the

instrument distance penalty had on overall covariate balance. To determine and optimal

threshold for the value of the reverse caliper and the number of sinks, we used a grid search

for values of the threshold from 0 to 1.10 (4 times the standard deviation of the pairwise

distances on the instrument) and sinks between 0 and 1000 (dropping approximately 50% of

the observations). Overall, 41 different values of the threshold and sinks were used, producing

1681 different match specifications.7 For each specification, optimal nonbipartite matching

was performed and balance statistics on the covariates and instrument were recorded. These

balance results are summarized graphically in Figure 2.1.

Figure 2.1 illustrates the trade-off between overall covariate balance and the strength of

the instrument.8 When we don’t place a constraint on the strength of the instrument, balance

7There is nothing special about the use of 41 different values of the threshold and sinks. It was simply a
convenient number that produced interpretable values on the threshold.

8Here we discuss the mean p-value for Kolmogorov-Smirnov two-sample tests on the seven covariates
discussed above. The patterns we highlight hold for median QQ statistics, t−tests, and Wilcoxon signed
rank statistics.
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on the covariates is easy to achieve, but as the threshold is increased—as the penalty for

being close on the instrument becomes more severe—overall balance declines. At the same

time, increasing the threshold does have the desired effect of increasing the distance on the

instrument in matched pairs. It is also clear from the figure that introducing sinks has the

desired effect of improving balance. As the number of sinks included in the match increases,

overall balance increases.

In this analysis, we choose a sinks/instrument threshold combination that prioritized co-

variate balance, while providing a modest increase in the strength of the instrument. Specif-

ically, we chose a threshold equal to two standard deviations on the pairwise differences in

rainfall, or Λ = 0.55, and 675 sinks which drops approximately one third of the observations.

This match is indicated in Figure 2.1 as a dot.

Table 2 presents balance statistics from the two matches. The first set of balance statistics

presented in the table, which we label Weak IV, is for the match that does not attempt to

maximize the discrepancy between matched counties on rainfall deviation and does not

utilize any sinks.9 The second match, which we label Strong IV, includes both the reverse

caliper and the sinks. That is, we strengthen the instrument by increasing distance on the

instrument, but we also seek to maximize balance through the use of sinks. Both matches are

well balanced, and one would not prefer one match over the other on the basis of this criterion.

The Strong IV match, however, produces a match where the standardized difference on the

rainfall measure increases from 0.82 to nearly 1.0. As such, we were only able to strengthen

the instrument a modest amount. We found that stronger instruments produced levels of

balance we thought unacceptable.

Of course, to increase the strength of the instrument we had to discard a number of

observations. The Strong IV match uses 625 matched county pairs instead of full set of 962

matched county pairs used in the Weak IV match. Given that weak instruments create biases

that outweigh sample size considerations, the Strong IV match is to be preferred (Small and

9The Weak IV match does include the penalty preventing the matching of geographically contiguous
counties.
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Rosenbaum 2008). We now turn to estimating the effect of interest and a sensitivity analysis.

In both cases, we should be able to understand whether strengthening the instrument alters

our inference.
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Table 2: Balance statistics for US county matches

(I) Weak IVa (II) Strong IVa

I = 962 matched pairs I = 625 matched pairs

Mean Mean Std. Med. KS Mean Mean Std. Med. KS
treated control diff. QQ p-valb treated control diff. QQ p-valb

Rainfall deviation 0.32 0.07 0.82 0.27 0.00 0.35 0.06 0.96 0.33 0.00

Population (log) 10.18 10.22 0.03 0.01 0.40 10.04 10.07 0.02 0.02 0.70
Percent African-American 0.02 0.02 0.00 0.01 0.97 0.02 0.02 0.01 0.01 0.58
Percent Hispanic 0.05 0.05 0.03 0.01 0.76 0.05 0.04 0.01 0.01 0.68
Percentage with High School Degree 0.81 0.81 0.01 0.01 1.00 0.81 0.81 0.03 0.01 0.83
Percentage with College Degree 0.17 0.17 0.04 0.01 0.83 0.17 0.17 0.00 0.00 0.99
Median Household Income (log) 10.48 10.48 0.01 0.01 0.86 10.46 10.46 0.02 0.01 0.78
Percentage Below Poverty Line 0.13 0.13 0.02 0.01 0.76 0.13 0.13 0.04 0.01 0.64

a Match (I) performed without reverse caliper or sinks; (II) performed with ε = 0.55 and 675 sinks.
b Kolmogorov-Smirnov p-values calculated from 5000 bootstrapped samples.
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Table 3 contains the IV point estimate, a 95% confidence interval, and results from the

sensitivity analysis for the two matches. We first focus on the results from the Weak IV

match. For the Weak IV match, the point estimate is 0.40, which implies that an increase in

turnout of one percentage point increases Democratic vote share by four-tenths of a percent.

The point estimate is statistically significant as the 95% confidence interval is bounded away

from zero. Next, we turn to the point estimate from Strong IV match. For the matches

which resulted in a stronger instrument, we find that the point estimate is now 0.60 or 50%

larger than from the design with the weaker instrument. Thus in counties where we are able

to strengthen the instrument we find that if turnout goes up by one percentage point, then

the Democratic vote share increase six-tenths of a percent. These estimates suggest that the

modest gains in instrument strength produces a larger point estimate.

These estimates assume that assignment to an above average amount of rain on election

day within matched pairs is effectively random. We next ask whether these estimates are

sensitive to bias from a hidden confounder that alters the probability of being assigned to

above average rain within matched pairs. We also focus on whether the design with the

smaller sample size but stronger instrument is more resistant to bias from an unobserved

confounder than the design with the weaker instrument. We find that the weaker instrument

is more sensitive to biases from unmeasured confounders. With the weaker instrument, we

find that Γ = 1.17 as compared to Γ = 1.31 for the design with the stronger instrument. For

the Weak IV match, the sensitivity analysis implies that if a hidden confounder changed the

odds of receiving an above average amount of rain on election day with matched pairs by

a factor of .17 that would explain the observed association. For the Strong IV match, the

odds of differential instrument assignment need to be 13% larger before we can explain the

observed association. Thus the estimate from the Strong IV match is 13% less sensitive to

unmeasured bias even though we used 337 fewer matched pairs than in the design with the

weaker instrument.

Before moving to a second analysis, we turn to the interpretation of IV estimates for
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this application. Hansford and Gomez (2010) do not discuss how the use of IV changes the

interpretation of their estimates, and we think it is worth carefully understanding what is

being estimated. One might presume that the IV estimate is simply the effect of turnout

on vote share purged of any endogenous variation. However, as we outlined earlier, IV

provides an estimate of the LATE. Therefore, IV identifies the average causal effect of the

treatment for the subset of the population whose selection into the treatment was induced

by the instrument. Here, the IV estimand is the average causal effect for the subset of

all counties that voted at a lower rate when subjected to an unusual amount of rainfall

on election day but would have voted at a higher rate if it had not rained. Importantly,

IV provides us with an average effect only among those induced to take the lower turnout

treatment by the rainfall intervention. As such, the IV estimate only refers to those who

respond to the rainfall instrument: the counties that are sensitive to unusual rainfall patterns

on election day. In general, we might wonder about the political relevance of the estimand

in this application. That is, we might ask whether we have any theory about counties that

are sensitive to rainfall? We can identify which states contribute the largest percentage of

counties influenced by rainfall. We found that states such as North Dakota, Minnesota,

Iowa, Missouri, Kentucky, Illinois, Colorado, and Wisconsin contribute more than half of

the treated counties. As we might suspect arid states like New Mexico, Arizona, California,

and Nevada contribute few or no counties to the analysis. An analysis by Fraga and Hersh

(2010) suggest these counties tend to be ones with uncompetitive elections. Moreover, the

Strong IV design changes the estimated further. For this design, the effect is a more local

version of LATE; one that only applies to counties that were strongly discouraged to vote by

rain on election day. Full consideration of this question is beyond the scope of this article.

However, when analysts apply IV to a natural experiment, they must seriously consider the

interpretation of the LATE.
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Table 3: Treatment effect estimates and sensitivity analysis for US counties match

Weak IV Strong IV

β̂ 95% CI β̂ 95% CI

0.400 0.200 0.577 0.600 0.358 0.872

Γ Weak IV Strong IV

1.00 0.000 0.000
1.15 0.024 0.001
1.16 0.032 0.001
1.17 0.041 0.002
1.18 0.052 0.003
1.19 0.065 0.004
1.20 0.080 0.005
1.30 0.368 0.040
1.31 0.407 0.047
1.32 0.446 0.056
1.33 0.486 0.065

2.2 Precinct Level Analysis

We, next, turn to a second empirical example where we again use rainfall as an instrument

for turnout. Now, however, we confine the analysis to a single Southern state, Georgia in

2000. This second example has three advantages over the prior one. First, as a Southern

state, Georgia wasn’t included in the original analysis, which excluded all Southern states.

A study of Georgia, then, represents an out-of-sample test. Second, by looking at a single

state we are able to conduct the analysis at a much finer level of geographic resolution. In

this case, we extend the analysis to the precinct level. Finally, looking at a single state,

utilizes a design that allows us to control for state-level confounders. Keele and Minozzi

(2012) demonstrate that turnout is subject to state level confounders that are difficult to

control for in an analysis with a national sample of counties. We selected Georgia since in

2000 there was considerable variation in rainfall on election day with some parts of the state

receiving little rain while other parts of the state were unusually rainy.

The first step in extending the analysis to Georgia was gathering the requisite data on
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rainfall. We used the same EarthInfo weather station data used in the original analysis.

To extend the rainfall measurements from weather stations to precincts, we used the same

method as the original analysis: kriging. Kriging is a statistical technique that produces an

estimate of the underlying (usually assumed to be smooth) surface by a weighted average

of the data, with weights declining with distance between the point at which the surface is

being estimated and the locations of the data points. In short, we estimate a rainfall surface

based on kriging and use the predictions from that model to estimate rainfall on election day

for each precinct.10 We estimate rainfall for the centroid of each precinct. We did this for

both rainfall on election day in 2000 and the average amount of rainfall in November. The

analysis is based on readings from all the weather stations in Georgia as well as a stations

from areas in bordering states that are close to the Georgia border. We included weather

stations from nearby states since the kriging model is strengthened by incorporating data

from near the Georgia border. For more rural parts of GA, estimating rainfall at the precinct

level adds little information since most counties have only a single weather station. In the

Atlanta metropolitan area and in other urban areas, however, the counties have multiple

weather stations. Since the bulk of the precincts are in urban areas, we are able to add a

much more fine grained estimates of local rainfall patterns on election data.

In this analysis, we match on the same covariates that we used in the county level analysis,

with one exception. We did not include the percentage of Hispanics in each precinct, since

there were very few Hispanics in Georgia in 2000. Census data in 2000 was collected at either

the block or blockgroup level. We hired a GIS analyst to either aggregate the block level

data to the precinct geography or estimate precinct level measures from the blockgroups

since in Georgia precincts typically differ by less than 1% in terms of population. Thus all

census measures were used as precinct level covariates.

Again, we start by examining whether the rainfall deviations measure appears to be

10For the kriging model, we used the K-Bessel function to model decay from each weather station. We
estimate the model with and without anisotropy to allow for possible directionality in the estimates due to
wind. The model fit with and without anisotropy was nearly the same. We checked whether our kriging
model was invariant to a number of different model parameters, but found little change in the estimates.
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allocated in an as-if random fashion. Table 4 contains balance statistics for the unmatched

precincts. As before, allocation of the treatment does not meet the as-if random criterion.

The treated counties had a lower percentage of African-Americans, higher education levels,

lower poverty rates, and higher incomes. Testing the difference in terms of the distributions,

we find that all the KS test p-values are below any reasonable threshold.

Table 4: Balance statistics for unmatched Georgia covariates

Mean treated Mean control Std. diff. KS p-valuea

Rainfall deviation 1.35 −1.52 1.65 0.00
Population (log) 7.93 7.64 0.35 0.00
Percent African-American 0.24 0.30 0.20 0.00
Percentage with High School Degree 0.18 0.20 0.39 0.00
Percentage with College Degree 0.11 0.08 0.43 0.00
Median Household Income (log) 10.72 10.53 0.44 0.00
Percentage Below Poverty Line 0.11 0.15 0.33 0.00

a Kolmogorov-Smirnov p-values calculated by with b = 5000 bootstrap replications.

We again applied optimal nonbipartite matching to the precinct level data in Georgia. As

before, we used the rank-based Mahalanobis distance metric and applied penalties to avoid

SUTVA violations and repeated the iterative search for an optimal distance for the reverse

caliper and the number of sinks. We used the same grid search for values of the threshold

from 0 to 1.10 (4 times the standard deviation of the pairwise distances on the instrument)

and sinks between 0 and 1500 (which corresponds to using all of the observations to dropping

approximately 45% of the observations). For each specification, optimal nonbipartite match-

ing was performed and balance statistics on the covariates and instrument were recorded.

With the Georgia data, we are able to produce matches with a stronger instrument that

preserves balance than we were in the county level analysis. With the Georgia data, we

chose a threshold equal to two standard deviations on the pairwise differences in rainfall, or

Λ = 1.55, and 1475 sinks. The Strong IV match uses about 45% of the precincts as compared

to the Weak IV match, which uses every precinct.
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Table 5: Balance statistics for Georgia precinct matches

(I) Weak IVa (II) Strong IVa

I = 1335 matched pairs I = 597 matched pairs

Mean Mean Std. Med. KS Mean Mean Std. Med. KS
treated control diff. QQ p-valb treated control diff. QQ p-valb

Rainfall deviation 0.19 −1.34 0.88 0.32 0.00 0.92 −1.74 1.53 0.48 0.00

Population (log) 7.74 7.74 0.00 0.00 0.97 7.79 7.76 0.04 0.01 0.71
Percent African-American 0.28 0.28 0.01 0.01 0.65 0.28 0.27 0.06 0.02 0.39
Percentage with High School Degree 0.20 0.20 0.00 0.00 0.90 0.20 0.20 0.04 0.01 0.99
Percentage with College Degree 0.09 0.09 0.01 0.00 0.89 0.08 0.08 0.03 0.01 0.95
Median Household Income (log) 10.59 10.58 0.03 0.01 0.77 10.59 10.57 0.04 0.01 0.27
Percentage Below Poverty Line 0.13 0.14 0.02 0.01 0.94 0.14 0.14 0.01 0.01 0.80

a Match (I) performed without reverse caliper or sinks; (II) performed with reverse caliper set to ε = 1.55 and 1475 sinks.
b Kolmogorov-Smirnov p-values calculated from 5000 bootstrapped samples.
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Table 5 presents the balance statistics for the Weak and Strong IV matches. Both matches

are well balanced with small standardized differences and large KS test p-values. With the

Strong IV match, we are able to achieve a much stronger instrument than we are able to

with the national data. The standardized difference for the Weak IV match is 0.88, while

the Strong IV match produces a standardized difference of 1.53. So we can nearly double

the strength of the instrument in this application. Here, the Strong IV match uses 597

matched pairs instead of the 1335 matched pairs that are in the full sample. We now turn

to estimating the effect of interest and a sensitivity analysis.

Table 6: Treatment effect estimates and sensitivity analysis for Georgia precincts match

Weak IV Strong IV

β 95% CI β 95% CI

0.06 0.04 0.08 0.24 0.20 0.29

Γ Weak IV Strong IV

1.00 0.000 0.000
1.56 0.045 0.000
2.56 1.000 0.040
2.57 1.000 0.043
2.58 1.000 0.046
2.59 1.000 0.050
2.60 1.000 0.054

Table 6 contains the IV point estimate, the 95% confidence interval, and results from

the sensitivity analysis. We first focus on the point estimates. When we match and do not

strengthen the instrument, the IV point estimate is 0.06, which implies that an increase

in turnout of one percentage point increases Democratic vote share by six-hundredths of

a percent. The point estimate is statistically significant as the 95% confidence interval is

bounded away from zero. We should note that the point estimate with the Georgia data

is much smaller than we found with the non-Southern U.S. counties: 0.40 as compared to

0.06. This is likely due to the fact that state level confounders have been controlled for in
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this within state design. Next, we turn to the point estimate from the Strong IV design.

In this application, the stronger instrument produces a much larger estimate than would be

true with the Weak IV design. With point estimate now 0.24, the Strong IV estimate is 4

times larger than the Weak IV estimate. This point estimate is, however, still much smaller

than the estimate based on counties.

We turn to a sensitivity analysis to understand whether the estimates are sensitive to

departures from the assumption of as-if random assignment of the instrument. We expect

the Strong IV design to produce an estimate that is less sensitive to hidden bias. We do

find that the weaker instrument is more sensitive to biases from unmeasured confounders.

With the Weak IV design Γ = 1.56 as compared to Γ = 2.59 with the stronger instrument.

As such, in the Strong IV design, the odds of differing on the assignment of rainfall within

matched pairs must differ by a factor of 2.59, while in the Weak IV design that factor is 1.56.

It is worth nothing that the Γ values with the Georgia data are much larger than in

the analysis with counties, which implies that the smaller estimates from Georgia are less

sensitive to hidden bias. As is often the case, a smaller more homogenous sample often

produces estimates that are more robust to hidden bias (Rosenbaum 2005a, 2010). Thus, in

terms of being robust to hidden bias, the smaller estimates from Georgia are more plausible

than the county level analysis, which is subject to state level confounders.

3 Discussion and Conclusion

In many areas of political science natural experiments are the only way to make compelling

causal claims. The difficulty is that analysts often mistake haphazard treatment assignment

for as-if random assignment. Haphazard treatment assignment, while preferable to self-

selection by units, still requires considerable care to ensure that causal claims are credible.

Instrumental variables are a valuable tool in the analysis of natural experiments, but IV

presents a number of well known pitfalls. Here, we highlight a less well known interaction

among the the IV assumptions. When treatment assignment is haphazard as it is in a

29



natural experiment, imbalance on covariates can occur. Such imbalances, even when minor,

combined with a weak instrument, produce inconsistent estimates (Small and Rosenbaum

2008).

We have outlined a strategy based on matching to cope with the challenges that arise

when instruments are weak and imbalances are present. We use matching to make units sim-

ilar in terms of observed pre-instrument covariates, while at the same time we find matched

pairs that are as dissimiliar as possible on the encouragement from the instrument. The end

result are matched pairs where imbalances are removed and the instrument is as strong as

possible. The matched design also allows us to easily apply Rosenbaum’s (2002b) method

of sensitivity analysis. In general, we think this nonparametric approach to IV is superior

to the more conventional methods of estimation for IV like two-stage least squares. In our

application, we removed imbalances that were in the original data and created a subset of

matched pairs where the instrument was stronger. Our method produces both larger point

estimates and were less sensitive to hidden bias. Our analysis also improves on the original

by using a within state design. This design produces estimates that are much smaller than

those based on a national sample.

Finally, we think it is worth concluding with some more general remarks about IV. Appli-

cations of IV can be done within the potential outcomes framework or it can be done within

a more traditional econometric approach. The danger of divorcing IV from the potential

outcomes framework is that the analyst can lose track of what is being estimated: the local

average treatment effect. The research question in this case is a general one about whether

the composition of the electorate that is marginal for voting tends to be more Democratic.

Does IV provide an answer to this general question? No. Instead IV allows us to observe that

for those places where turnout was lower because of unusual rainfall Democratic vote share

was lower. Thus the answer to this general question is based on a sub-population whose

political participation hinges on weather patterns. Is this a sub-population that is relevant

to political science theory? We do not attempt to offer an answer here, but analyses based
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on IV need to consider such questions. A more general answer to this research question

requires that we find other interventions that produce haphazard reductions in turnout. If

later research finds other instruments that lower turnout and Democratic vote share still

declines, then a more general causal pattern will have been established. In sum, successful

use of IV often provides a limited answer to more general questions. Divorcing IV from the

potential outcomes framework makes such confusion more likely.
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