
Chapter 6

Neyman’s Repeated Sampling

Approach

6.1 Introduction

In the last chapter we introduced the Fisher Exact P-value (FEP) approach for assessing

sharp null hypotheses. As we saw, a sharp null hypothesis allowed us fill in the values

for all missing potential outcomes in the experiment. This was the basis for deriving the

randomization distributions of various statistics, the distributions induced by the random

assignment of the treatments given fixed potential outcomes. During the same period in

which Fisher was developing this method, Jerzey Neyman was instead focusing on methods

for the estimation of, and inference for, average treatment effects, also using the distribution

induced by randomization and repeated sampling from a population. In particular, he was

interested in the long-run operating characteristics of statistical procedures under repeated

sampling and randomizations. Thus, he attempted to find point estimators that were unbi-

ased, and also interval estimators that had the specified nominal coverage in large samples.

As noted before, focusing on average effects is different from from the focus of Fisher; the av-

erage effect across a population may be equal to zero even when some or even all unit-level

treatment effects differ from zero. It is interesting to note that Neyman’s analysis shows

Fisher’s analysis to be conservative in a certain asymptotic sense. Neyman’s own proposal

for estimating the sampling variance of the difference in average outcomes for treated and

control units generally over-estimates the exact sampling variance, unless the treatment ef-

fect is constant and additive accross all units, which is automatically satisfied under Fisher’s

null hypothesis of no effects whatsoever.

1



2

Neyman’s basic questions were the following. What would the average outcome be if all

units were exposed to the active treatment, Y (1) in our notation? How did that compare to

the average outcome if all units were exposed to the control treatment, Y (0) in our notation?

Neyman’s approach was to develop an estimator of the difference between these two averages

and derive its mean and variance under repeated sampling. By repeated sampling we refer to

the sampling generated by drawing from both the superpopulation (the potential outcomes),

and from the randomization distribution (the assignment vector W), although originally

Neyman never described his analysis this way. His approach is similar to Fisher’s, in that

both consider the distribution of statistics (functions of the observed W and Yobs) under

the randomization distribution, with all potential outcomes regarded as fixed. The similarity

ends there. In Neyman’s analysis, we do not start with an assumption that allows us to fill in

all values of the missing potential outcomes, and so we cannot derive the exact randomization

distribution of statistics of interest. However, we can often obtain good estimators of aspects

of this distribution, for example, the first and second moments. In addition, we may be able

to generalize to units not in the experiment. Neyman’s primary concern was whether an

estimator was unbiased for the average treatment effect. A secondary goal was to construct an

interval estimator for the causal estimand, which he hoped to base on an unbiased estimator

for the sampling variance of the average treatment effect estimator. Confidence intervals, as

they were called later by Neyman (1934) , are stochastic intervals that are constructed in

such a way that they include the true value of the estimand with proportion, over repeated

draws, at least equal to some fixed probability, the confidence coefficient.

The remainder of this chapter is organized as follows. We begin by describing the data

that will be used to illustrate the concepts discussed in this chapter. These data are from a

study by Duflo and Hanna (2006) to asses the effect of teacher incentive program on teacher

performance. Next, we introduce Neyman’s estimator for the average treatment effect and

show that it is unbiased for the average treatment effect, given a completely randomized

experiment. We then calculate the sampling variance of this estimator and propose an

estimator of this variance. There are several approaches one can take in this latter step,

depending on whether one assumes a constant treatment effect.

Throughout the first part of this discussion, we assume that our interest is in a finite

population of size N . Because we do not attempt to infer anything about units outside

this population, it does not matter how it was selected; the entire analysis is conditional
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on the population itself. In the second part of this discussion, we relax this assumption

and instead consider, as did Neyman (1923), a super-population so that we can view the

sample of N units as randomly drawn from this population. Given this shift in perspective,

we reinterpret the original results, especially with respect to the choice of estimator for the

sampling variance, and the associated large sample confidence interval. Throughout the

chapter we maintain SUTVA.

We then apply this approach to the data from the teacher incentive experiment. We

conclude by discussing how to apply Neyman’s approach in the presence of discrete covariates

(maintaining the setting of a completely randomized experiment). With discrete covariates,

this approach is straightforward. One simply partitions the population into subpopulations

based on the values of the covariate, conducts the analyses on each subpopulation, and uses

the weighted average of these within-subpopulation treatment effects as the estimator of the

average treatment effect within the population as a whole, with the weights proportional

to the subpopulation sizes. With continuous covariates, this approach is infeasible. In this

setting a more appealing alternative is to construct a model for the potential outcomes under

each treatment level, derive an estimator of the average treatment effect under such a model,

estimate the sampling variance of this estimator, and apply the same logic as in this chapter;

such models are the topic of our next chapter.

6.2 The Duflo-Hanna-Ryan Teacher Incentive Experi-

ment

To illustrate the methods discussed in this chapter, we use data from a randomized ex-

periment conducted in rural India by Esther Duflo, Rema Hanna, and Steve Ryan (2008),

designed to study the effect of financial incentives on teacher performance, both measured

directly by teacher absences as well as by output measures, such as average class test scores.

For the purpose of the study, a population of N = 113 single-teacher schools was selected.

In a randomly selected subset of Nt = 57 schools, teachers were given a salary that was

tied to attendance over a month long period, whereas in the remaining Nc = 56 schools the

salary structure unchanged. In both the treatment and control schools, the teachers were

given cameras with time stamps and asked to have students take pictures of the class with

the teacher at the beginning and end of every school day. In addition, there were random
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unannounced visits to the schools by program officials to see whether the school was open

or not.

In the current chapter, to focus on Neyman’s approach, we avoid considering issues of

unintended missing data, and we use the 107 schools with recorded values for all five key

variables, in addition to the treatment indicator: four outcomes and one covariate. Out of

these 107 schools/teachers, 53 were chosen randomly to be given a salary schedule tied to

teacher attendance, and 54 were not, and assigned to the control sample. In our analysis we

use three outcome variables. The first is the proportion of times the school was open during

a random visit (open). The second outcome is the percentage of students who completed a

writing test (pctpostwritten). The third is the school average of the value of the writing

test score (written), averaged over all the students who took the test. Even though not all

students took the test, in all classes at least some students took the writing test at the end

of the study. The fourth outcome variable is the average of the writing test score with zeros

imputed for the students who did not take the test. We use one covariate in the analysis, the

percentage of the students who took the written test prior to the study (pctprewritten).

Table 6.1 presents summary statistics for the data set. For all four variables (the pretreat-

ment variables pctprewritten, and the three outcome variables open, pctpostwritten, and

written), we present averages and standard deviations by treatment status, and the mini-

mum and maximum over the full sample.

6.3 Unbiased Estimation of the Average Treatment Ef-

fect

Suppose we have a population consisting of N units. As before, for each unit there exist

two potential outcomes, Yi(0) and Yi(1), corresponding to the outcome under control and

treatment respectively. As with the Fisher Exact P-value (FEP) approach discussed in the

previous chapter, the potential outcomes are assumed fixed. As before, the only random

component is the treatment assignment, W, which has a known distribution. The random-

ization distribution of the treatment assignment defines which potential outcome is observed

for each unit.
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Neyman was interested in the population average treatment effect:

τ =
1

N

N
∑

i=1

(

Yi(1) − Yi(0)
)

= Y (1) − Y (0).

Suppose that we observe data from a completely randomized experiment in which Nt =
∑N

i=1 Wi units are assigned to treatment and Nc =
∑N

i=1(1 − Wi) are assigned to control.

Because of the randomization, a natural estimator for the average treatment effect is the

difference in the average outcomes for those assigned to treatment versus those assigned to

control:

τ̂ =
1

Nt

∑

i:Wi=1

Y obs
i −

1

Nc

∑

i:Wi=0

Y obs
i = Y

obs

t − Y
obs

c ,

where Y
obs

c =
∑

i:Wi=0 Y obs
i /Nc and Y

obs

c =
∑

i:Wi=1 Y obs
i /Nt. First let us show that this

estimator is unbiased for τ . Using the fact that Y obs
i = Yi(1) if Wi = 1, and Y obs

i = Yi(0) if

Wi = 0, we can rewrite the statistic τ̂ as:

τ̂ =
1

N

N
∑

i=1

(

Wi · Yi(1)

Nt/N
−

(1 − Wi) · Yi(0)

Nc/N

)

.

Because we view the potential outcomes as fixed, the only component in this statistic that

is random is the treatment assignment, Wi. Given our completely randomized experiment

(N units, with Nt randomly assigned to the treatment), by Section 3.5, PrW (Wi = 1) =

EW [Wi] = Nt/N . (Here we index the probability and expectation (and later the variance)

operators by W to denote that the probability, expectation or variance is taken solely over

the randomization distribution, keeping fixed the potential outcomes Y(0) and Y(1), and

keeping fixed the population of size N .) Thus, τ̂ is unbiased for the average treatment effect

τ :

EW [τ̂ ] =
1

N

N
∑

i=1

(

EW [Wi] · Yi(1)

Nt/N
−

EW [1 − Wi]) · Yi(0)

Nc/N

)

=
1

N

N
∑

i=1

(Yi(1) − Yi(0)) = τ.

(6.1)

Note that, in terms of bias, the share of treated and control units in the randomized exper-

iment is immaterial. This statement does not imply, however, that this share is irrelevant

for inference; it can greatly affect the precision of the estimator, as we shall see in the next

section.
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For the teacher-incentive experiment, taking the proportion of days that the school was

open (open) as the outcome of interest, this estimator for the average effect is

τ̂ = Y
obs

t − Y
obs

c = 0.80 − 0.58 = 0.22,

as can be seen from the numbers in Table 6.1.

6.4 The Sampling Variance of τ̂

Neyman was also interested in constructing interval estimates for the average treatment

effect, which he later (Neyman, 1934), called confidence intervals. This construction involves

three steps. First, derive the sampling variance of the estimator for the average treatment

effect. Second, develop estimators for this sampling variance. Third, appeal to a central limit

argument for the large sample normality of τ̂ over its randomization distribution, and use

its estimated sampling variances to create a large sample confidence interval for the average

treatment effect τ .

In this section we focus on the first step, calculating the sampling variance of our estimator

τ̂ = Y
obs

t − Y
obs

c , under a completed randomized experiment. This derivation is relatively

cumbersome because the assignments for different units are not independent in a completely

randomized experiment. With the number of treated units fixed at Nt, the fact that unit 1

is assigned to the active treatment lowers the probability that unit 2 will receive the same

active treatment. To show how to derive the sampling variance, we start with a simple

example of only two units. We then expand our discussion to the more general case with N

units and Nt randomly assigned to active treatment.

6.4.1 The Sampling Variance of the Unbiased Estimator With

Two Units

Consider the simple case with one treated and one control unit. The average treatment effect

in this case is

τ =
1

2
·
[

(Y1(1) − Y1(0)) + (Y2(1) − Y2(0))
]

. (6.2)

Assuming a completely randomized experiment—hence both units cannot receive the same

treatment—it follows that W1 = 1 − W2. The estimator for the average treatment effect is
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therefore:

τ̂ = W1 ·
(

Y1(1) − Y2(0)
)

+ (1 −W1) ·
(

Y2(1) − Y1(0)
)

.

If unit 1 receives the treatment (W1 = 1) our estimate of the average treatment effect will

be τ̂ = Y obs
1 − Y obs

2 = Y1(1) − Y2(0). If on the other hand, W1 = 0, the estimate will be

τ̂ = Y obs
2 − Y obs

1 = Y2(1) − Y1(0).

To simplify the following calculations of the sampling variance of this estimator, define

D = 2 · W1 − 1, so that W1 = (D + 1)/2. It follows that D ∈ {−1, 1}, and D2 = 1.

Furthermore, because the expected value of the random variable W1 is equal to 1/2, the

expected value of D, over the randomization distribution, is EW [D] = 0 and the variance is

VW (D) = EW [D2] = 1. In terms of D, we can write our estimator τ̂ as:

τ̂ =
D + 1

2
·
(

Y1(1) − Y2(0)
)

+
1 − D

2
·
(

Y2(1) − Y1(0)
)

,

which can be rearranged as:

τ̂ =
1

2
·
[(

Y1(1)− Y1(0)
)

+
(

Y2(1)− Y2(0)
)]

+
D

2
·
[(

Y1(1) + Y1(0)
)

−
(

Y2(1) + Y2(0)
)]

= τ +
D

2
·
[(

Y1(1) + Y1(0)
)

−
(

Y2(1) + Y2(0)
)]

.

Because EW [D] = 0, we can see that τ̂ is unbiased for τ , (which we already established).

However, this representation also makes the calculation of its sampling variance straightfor-

ward:

VW (τ̂ ) = VW

(

τ +
D

2
·
[(

Y1(1) + Y1(0)
)

−
(

Y2(1) + Y2(0)
)]

)

=
1

4
· VW (D) ·

[(

Y1(1) + Y1(0)
)

−
(

Y2(1) + Y2(0)
)]2

,

because τ and the potential outcomes are fixed. Given that VW (D) = 1, it follows that the

sampling variance of our estimator τ̂ is equal to:

VW (τ̂ ) =
1

4
·
[(

Y1(1) + Y1(0)
)

−
(

Y2(1) + Y2(0)
)]2

. (6.3)

This representation of the sampling variance shows that this will be an awkward object to

estimate, because it depends on all four potential outcomes, including products of potential

outcomes for the same unit that are never jointly observed.
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6.4.2 The Sampling Variance of τ̂ with N Units

To interpret expression (6.3), and to see how it can be estimated, we look at the general case

with N units, of which Nt are randomly assigned to treatment. To calculate the sampling

variance of Y
obs

t − Y
obs

c , we need the expectations of the second and cross moments of the

treatment indicators Wi for i = 1, . . . , N . Because Wi ∈ {0, 1} is binary, W 2
i = Wi, and thus

EW

[

W 2
i

]

= EW [Wi] =
Nt

N
, and VW (Wi) =

Nt

N
·

(

1 −
Nt

N

)

.

To calculate the cross moment in a completely randomized experiment, recall that with the

number of treated units fixed at Nt, the two events—unit i being treated and unit j being

treated—are not independent. Therefore EW [Wi · Wj] 6= EW [Wi] · EW [Wj] = (Nt/N)2.

Rather:

EW [Wi · Wj] = PrW (Wi = 1) · PrW (Wj = 1|Wi = 1) =
Nt

N
·
Nt − 1

N − 1
, for i 6= j,

because conditional on Wi = 1 there are Nt − 1 treated units remaining, out of N − 1 units

remaining.

Given the sampling moments derived above, we know the sampling variance and covari-

ance of Wi and Wj . A straightforward but surprisingly long and tedious calculation (given

in detail in Appendix B to this chapter) shows that the sampling variance of Y
obs

t − Y
obs

c is

equal to:

VW

(

Y
obs

t − Y
obs

c

)

=
S2

c

Nc
+

S2
t

Nt
−

S2
tc

N
, (6.4)

where S2
c and S2

t are the variances of Yi(0) and Yi(0) in the population, defined as:

S2
c =

1

N − 1

N
∑

i=1

(

Yi(0) − Y (0)
)2

, and S2
t =

1

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)2

,

(and equal to zero if N = 1), and S2
tc is the population variance of the unit-level treatment

effects, defined as:

S2
tc =

1

N − 1

N
∑

i=1

(

Yi(1) − Yi(0) − (Y (1) − Y (0))
)2

=
1

N − 1

N
∑

i=1

(

Yi(1) − Yi(0) − τ
)2

.

Let us consider the interpretation of the three components of this variance in turn. The

first two are fairly intuitive. Recall that the population average treatment effect is the
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difference in average potential outcomes: τ = Y (1)− Y (0). To estimate τ , we first estimate

Y (1), the population average potential outcome under treatment, by the average outcome for

the Nt treated units, Y
obs

t . This estimator is unbiased for Y (1). The population variance of

Yi(1) is S2
t =

∑

i(Yi(1)−Y 1)
2/(N−1). Given this population variance for Yi(1), the sampling

variance for an average from a sample of size Nt is S2
t /Nt =

∑

i(Yi(1)−Y (1))2/(Nt(N − 1)).

Similarly the average outcome for the Nc units assigned to control, Y
obs

c , is unbiased for the

population average outcome under the control, Y (0), and its sampling variance is S2
c/Nc.

These results follow by direct calculation, or by using standard results from the analysis of

simple random samples. Given a completely randomized experiment, the Nt treated units

provide a simple random sample of the N values Yi(1) and the Nc control units provide a

simple random sample of the N values Yi(0).

The third component of this sampling variance, S2
tc/N , is the population variance of

the unit-level treatment effects, Yi(1) − Yi(0). If the treatment effect is constant in the

population, this third term is equal to zero. If the treatment effect is not constant, S2
tc is

positive. Because it is subtracted from the sum of the first two elements in the expression

for the sampling variance of Y
obs

t − Y
obs

c , equation (6.4), the positive value for S2
tc reduces

the sampling variance of this estimator for the average treatment effect.

There is an alternative representation of the sampling variance of τ̂ that is useful. First

we write the variance of the unit-level treatment effect as a function of ρtc, the population

correlation coefficient between the potential outcomes Yi(1) and Yi(0):

S2
tc = S2

c + S2
t − 2 · ρtc · Sc · St,

where

ρtc =
1

(N − 1) · Sc · St

N
∑

i=1

(

Yi(1) − Y (1)
)

·
(

Yi(0)) − Y (0)
)

. (6.5)

By definition, ρtc is a correlation coefficient, and so lies in the interval [−1, 1]. Substituting

this representation of S2
tc into equation (6.4), the alternative expression for the sampling

variance of τ̂ (alternative to (6.4)) is:

VW

(

Y
obs

t − Y
obs

c

)

=
Nt

N ·Nc
· S2

c +
Nc

N · Nt
· S2

t +
2

N
· ρtc · Sc · St. (6.6)

The sampling variance of our estimator is smallest when the potential outcomes are perfectly
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negatively correlated (ρtc = −1), so that

S2
tc = S2

c + S2
t + 2 · Sc · St,

and

VW

(

Y
obs

t − Y
obs

c

∣

∣

∣
ρtc = −1

)

=
Nt

N · Nc

· S2
c +

Nc

N · Nt

· S2
t −

2

N
· Sc · St,

and largest when the two potential outcomes are perfectly positively correlated (ρtc = +1),

so that

S2
tc = S2

c + S2
t − 2 · Sc · St,

and

VW

(

Y
obs

t − Y
obs

c

∣

∣

∣
ρtc = 1

)

=
Nt

N · Nc

· S2
c +

Nc

N · Nt

· S2
t +

2

N
· Sc · St

=
S2

c

Nc
+

S2
t

Nt
−

(Sc − St)
2

N
. (6.7)

The most notable special case of perfect correlation arises when the treatment effect is

constant and additive. In that case,

Vconst = VW

(

Y
obs

t − Y
obs

c

∣

∣

∣
ρtc = 1, S2

c = S2
t

)

=
S2

c

Nc
+

S2
t

Nt
. (6.8)

The fact that the sampling variance of Y
obs

t − Y
obs

c is largest when the treatment effect is

constant (i.e., not varying) across units may be somewhat counterintuitive. Let us therefore

return to the two-unit case and consider the form of the sampling variance in more detail.

In this case, the sampling variance, presented in equation (6.3), is a function of the sum of

the two potential outcomes for each of the two units. Consider two examples. In the first,

Y1(0) = Y1(1) = 10, and Y2(0) = Y2(1) = −10. To calculate the correlation between the two

potential outcomes we use expression (6.5) for ρtc and find the numerator equals

1

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)

·
(

Yi(0) − Y (0)
)

=
(

(Y1(1) − 0) · (Y1(0) − 0) + (Y2(1) − 0) · (Y2(0) − 0)
)

= 200,
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and the two components of the denominator of ρtc equal

S2
c =

1

N − 1

N
∑

i=1

(

Yi(0) − Y (0)
)2

=
(

(10 − 0)2 + (−10 − 0)2
)

= 200,

and

S2
t =

1

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)2

=
(

(10 − 0)2 + (−10 − 0)2
)

= 200,

so that the correlation between the two potential outcomes is 1. In the second example,

suppose that Y1(0) = Y2(1) = 10, and Y1(0) = Y2(1) = −10. A similar calculation shows

that the correlation between the two potential outcomes is now −1. In both examples, the

average treatment effect is zero, but in the first, the treatment effect is constant and thus

equal to 0 for each unit, whereas in the second case the treatment effect for unit 1 is equal

to 20, and for unit 2 the treatment effect is equal to −20. As a result, when estimating

the average treatment effect, in the first case the two possible values of the estimator are

Y obs
1 − Y obs

2 = 20 (if W1 = 1 and W2 = 0) and Y obs
2 − Y obs

1 =-20 (if W1 = 0 and W2 = 1). In

contrast, in the second case, the two values of the estimator are both equal to 0. Hence the

sampling variance of the estimator in the first case, with ρtc = +1, is positive (in fact, equal

to 400), whereas in the second case, with ρtc = −1, the sampling variance is 0.

6.5 Estimating the Sampling Variance

Now that we have derived the sampling variance of our estimator, τ̂ = Y
obs

t − Y
obs

c , given a

completely randomized experiment, the next step is to develop an estimator of this sampling

variance. To do this, we consider separately each of the three elements of the sampling

variance, shown in equation (6.4).

The numerator of the first term, the population variance of the potential control outcome

vector, Y(0), is equal to S2
c . As shown in Appendix B, or from standard results on simple

random samples, an unbiased estimator for S2
c is

s2
c =

1

Nc − 1

∑

i:Wi=0

(

Yi(0) − Y
obs

c

)2

=
1

Nc − 1

∑

i:Wi=0

(

Y obs
i − Y

obs

c

)2

.

Analogously, we can estimate S2
t , the population variance of Yi(1), by

s2
t =

1

Nt − 1

∑

i:Wi=1

(

Yi(1) − Y
obs

t

)2

=
1

Nt − 1

∑

i:Wi=1

(

Y obs
i − Y

obs

t

)2

.
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The third term, S2
tc (the population variance of the unit-level treatment effects) is more

challenging to estimate because we never observe both Yi(1) and Yi(0) for the same unit.

We therefore have no direct observations on the variation in the treatment effects across the

population and therefore cannot directly estimate S2
tc. As noted previously, if the treatment

effects are constant and additive (Yi(1) − Yi(0) = c for all i), then this component of the

sampling variance is equal to zero and the third term vanishes. Under this circumstance we

can obtain an unbiased estimator for the sampling variance as:

V̂neyman =
s2

c

Nc
+

s2
t

Nt
. (6.9)

This estimator for the sampling variance is widely used, even when the assumption of an

additive treatment effect may be inaccurate. There are two main reasons for the popularity

of this estimator for the sampling variance. First, by implicitly setting the third element of

the estimated sampling variance equal to zero, the expected value of V̂neyman is at least as

large as the true sampling variance of Y
obs

t − Y
obs

c , irrespective of the heterogeneity in the

treatment effect. Hence, in large samples, confidence intervals generated using this estimator

of the sampling variance will have coverage at least as large, but not necessarily equal to,

their nominal coverage.1 (Note that this statement still needs to be qualified by the clause

“in large samples,” because we will rely on the central limit theorem to construct confidence

intervals.) As mentioned in the introduction to this chapter, it is interesting to return to the

discussion between Fisher and Neyman regarding the general interest in average treatment

effects and sharp null hypotheses. Neyman’s proposed estimator for the sampling variance is

only unbiased in the case of a constant additive treatment effect, which is satisfied under the

sharp null hypothesis of no treatment effects whatsoever, which was the case considered by

Fisher. In other cases the proposed estimator of the sampling variance overestimates the true

sampling variance of Y
obs

t − Y
obs

c . As a result, Neyman’s interval is generally conservative.

The second reason for using this estimator for the sampling variance of Y
obs

t − Y
obs

c is that

it is always unbiased for the sampling variance of τ̂ as an estimator of the super-population

average treatment effect; we shall discuss this super-population interpretation, at greater

length in Section 6.7.

1This potential difference between actual and nominal coverage of confidence intervals in randomized
experiments concerned Neyman, and probably with this in mind, he formally defined confidence intervals in
1934 to allow for the possibility that the actual coverage could be greater than the nominal coverage. Thus
the proposed conservative intervals are still valid.
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In the remainder of this section, we consider two alternative estimators for the sampling

variance of τ̂ . The first explicitly allows for treatment effect heterogeneity. Under treatment

effect heterogeneity, the estimator for the sampling variance in equation (6.9), V̂neyman, pro-

vides an upwardly biased estimate: the third term, which vanishes if the treatment effect is

constant, is now negative. The question arises whether we can improve upon the Neyman

variance estimator without risking undercoverage.

To see that there is indeed information to do so, recall the argument above that an

implication of constant treatment effects is that the variances S2
c and S2

t are equal. A

difference between these variances, which would in large samples lead to a difference in the

corresponding estimates s2
c and s2

t , indicates variation in the treatment effect.

To use this information to create a better estimator for the sampling variance of Y
obs

t −

Y
obs

c , let us turn to the representation of the sampling variance in equation (6.6), which

incorporates ρtc, the population correlation coefficient between the potential outcomes:

VW

(

Y
obs

t − Y
obs

c

)

= S2
c ·

Nt

N · Nc
+ S2

c ·
Nc

N · Nt
+ ρtc · Sc · St ·

2

N
.

Conditional on a value for the correlation coefficient, ρtc, we can estimate this sampling

variance as

V̂ρtc
= s2

c ·
Nt

N ·Nc
+ s2

t ·
Nc

N · Nt
+ ρtc · sc · st ·

2

N
. (6.10)

This variance is again largest if the two potential outcomes are perfectly correlated, that is,

ρ01 = 1. An alternative conservative estimator of the sampling variance that exploits this

bound is:

V̂ρtc=1 = s2
c ·

Nt

N · Nc
+ s2

1 ·
Nc

N · Nt
+ sc · st ·

2

N

=
s2

c

Nc
+

s2
t

Nt
−

(st − sc)
2

N
. (6.11)

If s2
c and s2

t are unequal, then V̂ρtc=1 will be smaller than V̂neyman. Because V̂ρtc=1 is still

conservative, in large samples it will lead to tighter confidence intervals for τ than using

the sampling variance estimate V̂neyman. Using V̂ρtc=1 to construct confidence intervals will

result is tighter confidence intervals than using V̂neyman, without compromising their validity.

The intervals based on V̂ρtc=1 will still be conservative because V̂ρtc=1 is still upwardly biased

when the true correlation is smaller than one, although less so than V̂neyman. Note, however,
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that with no information beyond the fact that S2
c 6= S2

t , all choices for ρtc smaller than unity

raise the possibility that we will underestimate the sampling variance and construct invalid

confidence intervals.

Next consider sampling variance estimation under the additional assumption that the

treatment effect is constant, Yi(1) − Yi(0) = τ for all i. valid only if the treatment effect is

in fact constant. In that case the third term in (6.11) is zero, and we can simply estimate

the variance as

s2
c

Nc
+

s2
t

Nt
,

which is equal to V̂neyman. However, an alternative is to exploit the fact that under the

constant treatment assumption, the population variance of the two potential outcomes, S2
t

and S2
t , must be equal. We can therefore define S2 ≡ S2

c = S2
t and pool the treated and

control vectors to estimate this common variance:

s2 =
1

N − 2
·
(

s2
c · (Nc − 1) + s2

t · (Nt − 1)
)

=
1

N − 2
·

(

∑

i:Wi=0

(

Y obs
i − Y

obs

c

)2

+
∑

i:Wi=1

(

Y obs
i − Y

obs

t

)2

)

. (6.12)

The larger sample size for this estimator (from Nc and Nt for s2
c and s2

t respectively, to N

for s2), leads to a more precise estimator for the sampling variance of Y
obs

t − Y
obs

c :

V̂const = s2 ·

(

1

Nc
+

1

Nt

)

. (6.13)

If the treatment effect is constant, this estimator is preferable to either V̂neyman or V̂ρtc=1,

but if not, it need not be valid. Both V̂neyman and V̂ρtc=1 are valid generally, and therefore

may be preferred.

Let us return to the Duflo-Hanna-Ryan teacher incentive data. The estimate for the

average effect of assignment to the incentives-based salary rather than the conventional

salary structure, on the likelihood that the school is open, is, as discussed in the previous

section, equal to 0.22. Now let us consider estimators for the sampling variance. First we

estimate the sample variances S2
c , S2

t , and the combined variance S2. The estimates are

s2
c = 0.192, s2

t = 0.132, and s2 = 0.162.
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The two sample variance s2
c and s2

t are quite different, with their ratio being larger than two.

Next we use the sample variances of the potential outcomes to estimate the sampling vari-

ance for the average treatment effect estimator. The first estimate for the sampling variance,

which is in general conservative but allows for unrestricted treatment effect heterogeneity, is

V̂neyman =
s2

c

Nc
+

s2
t

Nt
= 0.03112.

(We report four digits behind the decimal point to make explicit the small differences between

the various estimators for the sampling variance, although in practice one would only report

two or three digits.) The second estimate, still conservative, but exploiting differences in the

variance of the outcome by treatment group, and again allowing for unrestricted treatment

effect heterogeneity, is

V̂ρtc=1 = s2
c ·

Nt

N · Nc
+ s2

t ·
Nc

N · Nt
+ sc · st ·

2

N
= 0.03052.

By construction this estimator is smaller than V̂neyman. However, even though the variances

s2
c and s2

t differ by more than a factor two, the difference in the estimated sampling variances

V̂ρtc=1 and V̂neyman is very small in this example, less than 1%. In general, the standard

variance V̂neyman is unlikely to be substantially larger than V̂ρtc=1, as suggested by this

artificial example. The third and final estimate of the sampling variance, which relies on a

constant treatment effect for its validity, is

V̂const = s2 ·

(

1

Nc

+
1

Nt

)

= 0.03122.

6.6 Confidence Intervals and Testing

In the introduction we noted that Neyman’s interest in estimating the precision of the es-

timator for the average treatment effect was largely driven by an interest in constructing

confidence intervals. By a confidence interval with confidence coefficient 1 − α, we mean an

interval [CL(Yobs,W), CU(Yobs,W)], such that

PrW (CL(Yobs,W) ≤ τ ≤ CU (Yobs,W)) ≥ 1 − α.

The only reason the lower and upper bounds in this interval are random is through their

dependence on W. Its distribution is therefore generated by the randomization. Note that,
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in this expression, the probability of including the true value τ may exceed 1 − α, in which

case the interval is valid but conservative. Here we discuss a number of ways to construct such

confidence intervals and to conduct tests for hypotheses concerning the average treatment

effect. We will use the Duflo-Hanna-Ryan data to illustrate the steps of Neyman’s approach.

6.6.1 Confidence Intervals

Let V̂ be an estimate of the sampling variance of τ̂ under the randomization distribution

(we recommend using V̂neyman). Suppose we wish to construct a 90% confidence interval.

We use a normal approximation to the randomization distribution of τ̂ . This approximation

is somewhat inconsistent with our stress on finite sample properties of the estimator for

τ and its sampling variance, but it is driven by the lack of a priori information about

the joint distribution of the potential outcomes. As we will see, normality is often a good

approximation to the randomization distribution of standard estimates, even in fairly small

samples. To further improve on this approximation, we could approximate the distribution

of V̂neymanby a chi-squared distribution, and then use that to approximate the distribution

of τ̂ /
√

V̂neyman by a t-distribution. For simplicity here, we use the 5th and 95th percentile of

the standard normal distribution, -1.645 and 1.645, to calculate the central 90% confidence

interval as:

CIτ
0.90 =

(

τ̂ − 1.645 ·
√

V̂, τ̂ + 1.645 ·
√

V̂

)

.

More generally, if we wish to construct a central confidence interval with confidence level

(1 − α) × 100%, as usual we look up the α/2 and 1 − α/2 quantiles of the standard normal

distribution, denoted by cα/2, and construct the confidence interval:

CIτ
1−α =

(

τ̂ + cα/2 ·
√

V̂, τ̂ + c1−α/2 ·
√

V̂

)

.

This approximation applies when using any estimate of the sampling variance, and, in large

samples, the resulting confidence intervals are valid under the same assumptions that make

the corresponding estimator for the sampling variance an unbiased or upwardly biased esti-

mator of the true sampling variance.

Based on the three sampling variance estimates reported in the previous section for the

outcome that the school is open, we obtain the following three 90% confidence intervals.
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First, based on V̂neyman = 0.03112, we get

CIτ
0.90,neyman =

(

τ̂ + c0.10/2 ·

√

V̂neyman, τ̂ + c1−0.10/2 ·

√

V̂neyman

)

= (0.2154 − 1.645 · 0.0311, 0.2154 + 1.645 · 0.0311) = (0.1642, 0.2667).

Second, based on the sampling variance estimator assuming a constant treatment effect,

V̂const = 0.03122, we get a very similar interval,

CIτ
0.90,const = (0.1640, 0.2668).

Finally, based on the third sampling variance estimator, V̂ρtc=1 = 0.03052, we get again a

fairly similar interval,

CIτ
0.90,ρtc=1 = (0.1652, 0.2657).

With the estimates for the sampling variances so similar, the three confidence intervals are

also very similar.

6.6.2 Testing

We can also use the sampling variance estimates to carry out tests of hypotheses concerning

the average treatment effect. Suppose we wish to test the null hypothesis that the average

treatment effect is zero against the alternative that it differs from zero:

Hneyman
0 :

1

N

N
∑

i=1

(Yi(1) − Yi(0)) = 0

Hneyman
a :

1

N

N
∑

i=1

(Yi(1) − Yi(0)) 6= 0

A natural test statistic to use for Neyman’s “average null” is the the ratio of the point

estimate to the estimated standard error. For the teacher incentive data, the point estimate

is Y
obs

t − Y
obs

c = 0.2154. The estimated standard error is, using the conservative estimator

for the sampling variance V̂neyman, equal to 0.0311. The resulting t-statistic is therefore

t =
Y

obs

t − Y
obs

c
√

V̂neyman

= −
0.2154

0.0311
= 6.9.
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The associated p-value for a two-sided test is 2 · (1 − Φ(6.9)) < 0.001. At conventional

significance levels, we clearly reject the (Neyman) null hypothesis that the average treatment

effect is zero.

It is interesting to compare this test based on Neyman’s approach to the FEP approach.

There are two important differences between the two tests. First, they assess different null

hypotheses, for example a zero average effect for Neyman versus a zero effect for all units

for Fisher. Second, the Neyman test relies on a large sample normal approximation for its

validity, whereas the FEP approach is exact.

Let us discuss both differences in more detail. First consider the difference in hypotheses.

The Neyman test assesses whether the average treatment effect is zero, whereas the FEP

assesses whether the treatment effect is zero for all units in the experiment. Formally, in the

Fisher approach the null hypothesis is

Hfisher
0 : Yi(1) − Yi(0) = 0 for all i = 1, . . . , N,

and the (implicit) alternative hypothesis is

Hfisher
a : Yi(1) − Yi(0) 6= 0 for some i = 1, . . . , N.

Depending on the implementation of the FEP approach, this difference in null hypothe-

ses may be unimportant. If we choose to use a test statistic proportional to the average

difference, we end up with a test that has virtually no power against alternatives with het-

erogenous treatment effects that average out to zero. We would have power against at least

some of those alternatives if we choose a different statistic. Consider as an example, a pop-

ulation where for all units Yi(0) = 2. For 1/3 of the units the treatment effect is 2. For

2/3 of the units the treatment effect is -1. In this case the Neyman null hypothesis of a

zero average effect is true. The Fisher null hypothesis of no effect whatsoever is not true.

Whether we can detect this violation depends on the choice of statistic. The FEP approach

with the statistic based on the average difference in outcomes by treatment status has no

power against this alternative. However, the FEP approach with a different statistic, based

on transforming the outcomes by taking logarithms, does have power in this setting. In this

artificial example, the expected difference in logarithms by treatment status is -0.23. The

FEP based on the difference in average logarithms will detect this difference in large enough
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samples. The Neyman approach does not gives us a choice of test statistic, unless we wish

to change the null hypothesis.

The second difference between the two procedures is in the approximate nature of the

Neyman test, compared to the exact results for the FEP approach. We use two approxima-

tions in the Neyman approach. First we use the estimated variance (e.g., V̂neyman) instead

of the exact variance (VW (Y
obs

t − Y
obs

c )). Second, we use a normal approximation for the

repeated sampling distribution of the difference in averages Y
obs

t − Y
obs

c . Both approxima-

tions have a justification in large samples. If the sample is reasonably large, and if there are

few or not outliers, as in the application in this chapter, these approximations will likely be

accurate.

6.7 Inference for Super-population Average Treatment

Effects

In the introduction to this chapter, we commented on the distinction between a finite popu-

lation interpretation, in which the sample of size N is considered the population of interest,

and a super-population interpretation, in which the N observed units are considered a ran-

dom sample from a larger population. The second argument in favor of using the sampling

variance estimator V̂neyman in equation (6.9) is that, regardless of the level of heterogeneity in

the unit-level treatment effect, V̂neyman is unbiased for the sampling variance of the estimator

τ̂ for the super-population average treatment effect. Here we further explore this argument,

address how it affects our interpretation of the estimator of the average treatment effect,

and discuss the various choices of estimators for its sampling variance.

Suppose that the population of N subjects taking part in the completely randomized

experiment is itself a simple random sample from a larger population. For simplicity, we

assume that this “super-population” is infinitely large. This is a slight departure from

Neyman’s explicit focus on the average treatment effect for a finite population. In many

cases this change of focus is immaterial. Although in some agricultural experiments farmers

may be genuinely interested in which fertilizer was best for their specific fields the year

of the experiment, in most social and medical science settings, experiments are, explicitly

or implicitly, conducted with a view to informing policies for a larger population of units.

However, without additional information, we cannot hope to obtain more precise estimates
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for the effects in the super-population than for the effects in the sample. In fact, the estimates

for the super-population estimands are typically strictly less precise. Ironically it it is exactly

this loss in precision that enables us to obtain unbiased estimates of the sampling variance

of the traditional estimator for the average treatment effect in the super-population.

Viewing our N units as a sample of the target population, rather than viewing them

as the population itself, induces a distribution on the two potential outcomes. The pair

of potential outcome values of an observed unit i is simply one draw from the distribution

within the full population and is, therefore, itself stochastic. The distribution of the pair of

two potential outcomes in turn induces a distribution on the unit-level treatment effect and

on the average of the unit-level treatment effect within the drawn sample. To be clear about

this superpopulation perspective, we use the subscript SP to denote the super-population

average treatment effect and FS to denote the finite sample average treatment effect:

τSP = ESP [Yi(1) − Yi(0)] and τFS =
1

N

N
∑

i=1

(Yi(1) − Yi(0)) .

Analogously, the subscript SP to the expectations operator indicates that the expectation

is taken over the distribution generated by random sampling from the superpopulation, and

not solely over the randomization distribution. Thus τSP = ESP[Yi(1)−Yi(0)] is the expected

value of the unit-level treatment effect, under the distribution induced by sampling from

the superpopulation, or, equivalently, the average treatment effect in the super-population.

See Appendix A for details on the superpopulation perspective. Let σ2
tc be the variance

of the unit-level treatment effect within this super-population, σ2
tc = VSP(Yi(1) − Yi(0)) =

ESP[(Yi(1) − Yi(0) − τSP)2], and let σ2
c and σ2

t denote the population variances of the two

potential outcomes, or the super-population expectations of S2
c and S2

t : σ2
c = VSP(Yi(0)) =

E [(Yi(0) − ESP[Yi(0))
2] and σ2

t = VSP(Yi(1)) = E [(Yi(1) − ESP[Yi(1))
2].

As stated above, the sample of size N , previously the target population, is now assumed

to be a simple random sample from this target super-population. This implies that the

average treatment effect within the sample, that is, the sample average treatment effect,

τFS = Y (1) − Y (0), can be viewed as a random variable with expectation equal to the

population average treatment effect in the super-population, τSP:

ESP [τFS] = ESP

[

Y (1) − Y (0)
]

=
1

N

N
∑

i=1

ESP [Yi(1) − Yi(0)] = τSP. (6.14)
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Thus, (6.14) states that, assuming that the N units in our sample arose from a simple random

sample, the average treatment effect in the sample is unbiased for the average treatment effect

in the super-population.

The definition of the variance of the unit-level treatment effect within the super-population,

σ2
tc, implies that the variance of τFS across repeated random samples is equal to

VSP(τSP) = VSP

(

Y (1) − Y (0)
)

= σ2
tc/N. (6.15)

Now let us consider the sampling variance of the standard estimator for the average treat-

ment effect, τ̂ = Y
obs

t − Y
obs

c , given this sampling from a super-population. The expectation

and variance operator without subscript denote expectations and variances taken over both

the randomization distribution and the random sampling. We have

V (τ̂ ) = V

(

Y
obs

t − Y
obs

c

)

= E

[

(

Y
obs

t − Y
obs

c − E

[

Y
obs

t − Y
obs

c

])2
]

= E

[

(

Y
obs

t − Y
obs

c − ESP

[

Y (1) − Y (0)
]

)2
]

,

where the second equality holds because E

[

Y
obs

t − Y
obs

c

]

and ESP[Y (1) − Y (0)] are both

equal to τSP, as shown above. Adding and subtracting Y (1) − Y (0) within the expectation,

this sampling variance, over both randomization and random sampling, is equal to:

V

(

Y
obs

t − Y
obs

c

)

= E

[

(

Y
obs

t − Y
obs

c −
(

Y (1) − Y (0)
)

+
(

Y (1) − Y (0)
)

− ESP

[

Y (1) − Y (0)
]

)2
]

= E

[

(

Y
obs

t − Y
obs

c − (Y (1) − Y (0))
)2
]

+ESP

[

((

Y (1) − Y (0)
)

− ESP

[

Y (1) − Y (0)
])2
]

+2·E
[(

Y
obs

t − Y
obs

c −
(

Y (1) − Y (0)
)

)

·
((

Y (1) − Y (0)
)

− ESP

[

Y (1) − Y (0)
])

]

.

The third term of this last equation is equal to zero because the expectation of the first

factor, Y
obs

t − Y
obs

c − (Y (1) − Y (0)), conditional on the N–vectors Y(0) and Y(1), is zero.

Hence the sampling variance reduces to:

V

(

Y
obs

t − Y
obs

c

)

=

E

[

(

Y
obs

t − Y
obs

c − Y (1) − Y (0)
)2
]

+ ESP

[

(

Y (1) − Y (0) − ESP [Y (1) − Y (0)]
)2
]

.
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(6.16)

In equation (6.1) we showed that EW

[

Y
obs

t − Y
obs

c

∣

∣

∣
Y(0),Y(1)

]

= Y (1) − Y (0), hence by

iterated expectations, the first term on the right side is equal to the expectation of the

conditional variance of Y
obs

t −Y
obs

c (conditional on the N -vector of potential outcomes Y(0)

and Y(1)). This is equal to

EW

[

(

Y
obs

t − Y
obs

c − Y (1) − Y (0)
)2
∣

∣

∣

∣

Y(0),Y(1)

]

=
S2

c

Nc
+

S2
t

Nt
−

S2
tc

N
, (6.17)

as in equation (6.4). Recall that these earlier calculations were made when assuming that

the sample N was the target population, and thus were conditional on Y(0) and Y(1). The

expectation of (6.17) over the distribution of Y(0) and Y(1) generated by sampling from

the superpopulation is

E

[

(

Y
obs

t − Y
obs

c − Y (1) − Y (0)
)2
]

= ESP

[

EW

[

(

Y
obs

t − Y
obs

c − Y (1) − Y (0)
)2
∣

∣

∣

∣

Y(0),Y(1)

]]

= ESP

[

S2
c

Nc
+

S2
t

Nt
−

S2
tc

N

]

=
σ2

c

Nc
+

σ2
t

Nt
−

σ2
tc

N
.

The expectation of the second term on the right side of equation (6.16), is equal to σ2
tc/N ,

as we saw in equation (6.15). Thus the sampling variance of Y
obs

t −Y
obs

c over sampling from

the superpopulation equals:

VSP = V

(

Y
obs

t − Y
obs

c

)

=
σ2

c

Nc
+

σ2
t

Nt
, (6.18)

which we can estimate by substituting s2
c and s2

t for σ2
c and σ2

t , respectively:

V̂SP =
s2

c

Nc
+

s2
t

Nt
.

Notice that V̂SP is identical to the previously introduced conservative estimator of the

sampling variance for the finite population average treatment effect estimator, V̂neyman, pre-

sented in Equation 6.9. Under simple random sampling from the super-population, the

expected value of the estimator V̂neyman equals VSP. Hence, considering the N observed

units as a simple random sample from an infinite super-population, the estimator in (6.9)

is an unbiased estimate of the sampling variance of the estimator of the super-population
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average treatment effect. Neither of the alternative estimators—V̂const in equation (6.13),

which exploits the assumption of a constant treatment effect, nor V̂ρtc=1 in equation (6.11),

derived through bounds on the correlation coefficient—have this attractive quality. Thus,

despite the fact that V̂const may be a better estimator of the sampling variance when the

treatment effect is constant, and V̂ρtc=1 may be a better estimator of VFS, V̂neyman is used far

more frequently in practice in our experience, although the logic for it appears to be rarely

articulated.

6.8 Neyman’s Approach With Covariates

One can easily extend Neyman’s approach for estimating average treatment effects to set-

tings with discrete covariates. In this case, one would partition the full samples into subsam-

ples defined by the values of the covariate and then conduct the analysis separately within

these subpopulations. The resulting within-subpopulation estimators would be unbiased for

the within-subpopulation average treatment effect. Taking an average of these estimates,

weighted by subpopulation sizes, gives an unbiased estimate of the overall average treatment

effect. As we see in Chapter 9, we in fact consider this method in the discussion on stratified

random experiments.

It is impossible, however, to derive estimators that are exactly unbiased under the ran-

domization distribution, conditional on the covariates, if there are covariate values for which

we have only treated or only control units. In settings with covariates that take on many

values, this is likely to happen with great frequency. In such settings building a model for

the potential outcomes, and using this model to create an estimator of the average treatment

effect, becomes a more appealing option. We turn to this topic in the next two chapters.

6.9 Results for the Duflo-Hanna Teacher Incentive Data

Now let us return to the teacher incentive data and systematically look at the results based

on the methods discussed in the current chapter. We analyze five “outcomes” in turn.

For illustrative purposes we report here a number of point, sampling variance and interval

estimates. It should be kept in mind that the confidence intervals will only have their

nominal coverage if only one is evaluated. The first variable we analyze as an outcome is a
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pre-treatment variable, and so we know a priori that the causal effect of the treatment on

this variable is zero, both at the unit level and on average. In general it can be useful to

carry out such analyses as a check on the success of the randomization: that is, we know here

that the Fisher null hypothesis of no effect whatsoever is true. The pre-treatment variable

is pctprewritten, the percentage of students in a school that took the pre-program writing

test. For this variable, we estimate, as anticipated, the average effect to be small, with a

95% confidence interval that comfortably includes zero.

Next we turn to the four “real” outcomes. First, the causal effect of the attendance-

related salary incentives on the proportion of days that the school was open during the of

days it was subject to a random check. The estimated effect is 0.22, with a 95% confidence

interval of [0.15, 0.28]. It is clear that the attendance-related salary incentives lead to a

higher proportion of days with the school open. We also look at the effect on the percentage

of students in the school who took the written test, pctpostwritten. Here the estimated

treatment effect is 0.05, with a 95% confidence interval of [−0.03, 0.13]. The effect is not

distinguishable from zero at the 95% significance level, but it is at the 90% significance level.

Next, we look at the average score on the writing test, which leads to a point estimate of

0.17, with a 95% confidence interval of [0.00, 0.34]. Finally, we examine the average test

score, assigning zeros to students not taking the test. Now we estimate an average effect of

0.14, with a 95% confidence interval of [0.00, 0.28].

In the final analysis, we look at estimates separately for two subpopulations, defined by

whether the proportion of students taking the initial writing test was zero or positive, to

illustrate the application of the methods developed in this chapter to subpopulations defined

by covariates. These analyses are for illustrative purposes only, and we do not take account

of the fact that we do multiple tests here. The first subpopulation (pctprewritten= 0)

comprised 40 schools (37%) and the second (pctprewritten> 0) 67 schools (63%). We

analyze separately the effect of assignment to attendance-based teacher incentives on all

four outcomes. The results are reported in Table 6.4. The main substantive finding is that

the effect of the incentive scheme on writing skills appears higher for schools where many

students entered with some writing skills (sufficient to at least take the initial test). Although

the 95% confidence interval includes zero (-0.41,0.05), the difference from the effect for the

group with no students taking the initial test is almost signicant at the 10% level. The 90%

confidence interval is (-0.37,0.01).
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6.10 Conclusion

In this chapter we discussed Neyman’s approach to estimation and inference in completely

randomized experiments. He was interested in assessing the operating characteristics of

statistical procedures under repeated sampling. Neyman focused on the average effect of

the treatment. He proposed an estimator for the average treatment effect in the finite

sample, and showed that it was unbiased under repeated sampling. He also derived the

sampling variance for this estimator. Finding an estimator for this sampling variance that

itself is unbiased turned out to be impossible in general. Instead Neyman showed that the

standard estimator for the sampling variance of this estimator is positively biased, unless

the treatment effects are constant and additive, in which case it is unbiased. Like Fisher’s

approach, Neyman’s methods have great appeal in the settings where they apply. However,

again like Fisher’s methods, there are many situations where we are interested in questions

beyond those answered by their approaches. For example, we may want to estimate average

treatment effects adjusting for differences in covariates in settings where some covariate

values appear only in treatment or control groups. In the next two chapters we discuss

methods that do not have the exact (finite sample) statistical properties that make the

Neyman and Fisher approaches so elegant in their simplicity, but that do answer additional

questions, albeit under additional assumptions.
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Appendix A: Random Sampling from a Superpopulation

In this chapter we introduced the superpopulation perspective. In this Appendix we provide more details
of this approach, and the differences from the finite population perspective. Let NSP be the size of the
superpopulation, with NSP large, but finite. Each unit in this population is characterized by the triple
(Yi(0), Yi(1)), for i = 1, . . . , NSP. Let YSP(0) and YSP(1) denote the NSP-component vectors with ith
element equal to Yi(0) and Yi(1) respectively. We continue to view these potential outcomes as fixed. Our
finite sample is a Simple Random Sample (SRS) of size N from this large superpopulation. We take N as
fixed. Let Ri denote the sampling indicator, so that Ri = 1 if unit i is sampled, and Ri = 0 if unit i is not
sampled, with

∑NSP

i=1 Ri = N . The sampling indicator is a binomial random variable with mean N/NSP and
variance (N/NSP) · (1 − N/NSP). The covariance between Ri and Rj, for i 6= j, is −(N/NSP)2. Within the
finite sample of size N , we carry out a completely randomized experiment, with Nt units randomly selected
to receive the active treatment, and the remaining Nc = N − Nt units assigned to the control treatment.
For the units in the finite sample Wi = 1 for units assigned to the treatment group, and Wi = 0 for units
assigned to the control group. To simplify the exposition, let us assign Wi = 0 to all units not sampled (with
Ri = 0).
The superpopulation average treatment effect is

τSP =
1

NSP

NSP
∑

i=1

(Yi(1) − Yi(0)) ,

and the variance of the treatment effect in the superpopulation is

σ2
tc =

1

NSP

NSP
∑

i=1

(Yi(1) − Yi(0) − τSP)
2
.

Now consider the finite population average treatment effect:

τFS =
1

N

NSP
∑

i=1

Ri · (Yi(1) − Yi(0)) .

Viewing Ri as random, but keeping (Yi(0), Yi(1)), for i = 1, . . . , NSP fixed, we can take the expectation of τFS

over the distribution generated by the random sampling. Indexing the expectations operator by subscript
W to be explicit about the fact that the expectation is taken over the distribution generated by the random
sampling, and thus over Ri, i = 1, . . . , N , we have

ESP [ τFS|YSP(0), YSP(1)] =
1

N

NSP
∑

i=1

ESP [Ri] · (Yi(1) − Yi(0)) =
1

N

NSP
∑

i=1

N

NSP
· (Yi(1) − Yi(0)) = τSP.

The variance of the finite sample average treatment effect is

VSP (τFS|YSP(0), YSP(1)) = ESP





(

1

N

NSP
∑

i=1

Ri · (Yi(1) − Yi(0)) − τSP

)2
∣

∣

∣

∣

∣

∣

YSP(0), YSP(1)





= ESP





(

1

N

NSP
∑

i=1

(

Ri −
N

NSP

)

· (Yi(1) − Yi(0) − τSP)

)2
∣

∣

∣

∣

∣

∣

YSP(0), YSP(1)





=
1

N2

NSP
∑

i=1

NSP
∑

i=1

ESP

[(

Ri −
N

NSP

)

·

(

Rj −
N

NSP

)

· (Yi(1) − Yi(0) − τSP) · (Yj(1) − Yj(0) − τSP)

∣

∣

∣

∣

YSP(0), YSP(1)

]

=
1− N/NSP

N · NSP

NSP
∑

i=1

(Yi(1) − Yi(0) − τSP)2−
1

N2
SP

NSP
∑

i=1

∑

j 6=i

(Yi(1) − Yi(0) − τSP) ·(Yj(1) − Yj(0) − τSP)
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=
σ2

tc

N
−

σ2
tc

NSP
−

1

N2
SP

NSP
∑

i=1

∑

j 6=i

(Yi(1) − Yi(0) − τSP) · (Yj(1) − Yj(0) − τSP) .

If NSP is large relative to N , the last two terms are small relative to the first one, and the variance of τFS

over the superpopulation is approximately equal to

VSP (τFS|YSP(0), YSP(1)) ≈
σ2

SP

N
.

Now let us consider the estimator τ̂ = Y
obs

t − Y
obs

c . We can write this in terms of the superpopulation as

τ̂ =
1

Nt

NSP
∑

i=1

Ri · Wi · Y
obs
i −

1

Nc

NSP
∑

i=1

Ri · (1 − Wi) · Y
obs
i .

We can take the expectation of this estimator, first conditional on R (and always conditional on YSP(1) and
YSP(0)), so the expectation is over the randomization distribution:

EW [ τ̂ |R, YSP(1), YSP(0)] =
1

Nt

NSP
∑

i=1

Ri · EW [Wi] · Y
obs
i −

1

Nc

NSP
∑

i=1

Ri · EW [1 − Wi] · Y
obs
i

=
1

N

NSP
∑

i=1

Ri · (Yi(1) − Yi(0)) = τFS.

Thus, the unconditional expectation of τ̂ , taken both over the randomization distribution and the sampling
distribution, is

E [ τ̂ |YSP(1), YSP(0)] = ESP [EW [ τ̂ |R, YSP(1), YSP(0)]|YSP(1), YSP(0)]

= ESP [ τFS|YSP(1), YSP(0)] = τSP.

Next we calculate the sampling variance, both over the randomization distribution and over the sampling
distribution. By iterated expectations,

VSP = V ( τ̂ |YSP(1), YSP(0))

= ESP [VW ( τ̂ |R, YSP(1), YSP(0))|YSP(1), YSP(0)]+VSP (EW [ τ̂ |R, YSP(1), YSP(0)]|YSP(1), YSP(0))

= ESP

[

S2
c

Nc

+
S2

t

Nt

−
S2

tc

N

∣

∣

∣

∣

YSP(1), YSP(0)

]

+ VSP (τFS|YSP(1), YSP(0))

=
σ2

c

Nc

+
σ2

t

Nt

−
σ2

tc

N
+

σ2
tc

N
−

σ2
tc

NSP
−

1

N2
SP

NSP
∑

i=1

∑

j 6=i

(Yi(1) − Yi(0) − τSP) · (Yj(1) − Yj(0) − τSP)

≈
σ2

c

Nc

+
σ2

t

Nt

,

when NSP is large relative to N .
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Appendix B: Sampling Variance Calculations

First we calculate the sampling variance of the estimator τ̂ = Y
obs
t − Y

obs
c . As before, we have N units, Nt

receiving the treatment and Nc receiving the control. The average treatment effect is:

Y (1) − Y (0) =
1

N

N
∑

i=1

(Yi(1) − Yi(0)) = τ.

The standard estimator of τ is:

τ̂ = Y
obs
t − Y

obs
c =

1

Nt

N
∑

i=1

Wi · Y
obs
i −

1

Nc

N
∑

i=1

(1 − Wi) · Y
obs
i

=
1

N

N
∑

i=1

(

N

Nt

· Wi · Yi(1) −
N

Nc

· (1 − Wi) · Yi(0)

)

.

For the variance calculations is useful to work with a centered treatment indicator Di, defined as

Di = Wi −
Nt

N
=

{

Nc

N
if Wi = 1

−Nt

N
if Wi = 0.

The expectation of Di is zero, and its variance is V(Di) = E[D2
i ] = NcNt/N

2. Later we also need its cross
moment, E[Di · Dj ]. For i 6= j the distribution of this cross product is

PrW (Di ·Dj = d) =



















Nt·(Nt−1)
N·(N−1) if d = N2

c /N2

2 · Nt·Nc

N·(N−1) if d = −NtNc/N
2

Nc·(Nc−1)
N·(N−1) if d = N2

t /N2

0 otherwise,

leading to

EW [Di · Dj ] =

{

Nc·Nt

N2 if i = j
− Nt·Nc

N2·(N−1)
if i 6= j

,

if i 6= j.
In terms of Di our estimate of the average treatment effect is:

Y
obs

t − Y
obs

c =
1

N

N
∑

i=1

(

N

Nt

·

(

Di +
Nt

N

)

· Yi(1) −
N

Nc

·

(

Nc

N
− Di

)

· Yi(0)

)

=
1

N

N
∑

i=1

(Yi(1) − Yi(0)) +
1

N

N
∑

i=1

Di ·

(

N

Nt

· Yi(1) +
N

Nc

· Yi(0)

)

.

= τ +
1

N

N
∑

i=1

Di ·

(

N

Nt

· Yi(1) +
N

Nc

· Yi(0)

)

. (B.1)

Because EW [Di] = 0 and all potential outcome are fixed, the estimator Y
obs

t − Y
obs

c is unbiased for the
average treatment effect, τ = Y (1) − Y (0).

Next, because the only random element in equation (B.1) is Di, the variance of τ̂ = Y
obs

t − Y
obs

c is equal to
the variance of the second term in equation (B.1). Using Y +

i as shorthand for (N/Nt)Yi(1) + (N/Nc)Yi(0),
this is equal to:

VW

(

Y
obs

t − Y
obs

c

)

=
1

N2
· EW





(

N
∑

i=1

Di · Y
+
i

)2


 . (B.2)
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Expanding equation (B.2) we get:

VW

(

Y
obs
t − Y

obs
c

)

= EW





1

N2

N
∑

i=1

N
∑

j=1

DiDjY
+

i Y +
j





=
1

N2

N
∑

i=1

(

Y +
i

)2
· EW

[

D2
i

]

+
1

N2

N
∑

i=1

∑

j 6=i

EW [Di · Dj ] · Y
+
i · Y +

j

=
Nc · Nt

N4

N
∑

i=1

(

Y +
i

)2
−

Nc ·Nt

N4 · (N − 1)

N
∑

i=1

∑

j 6=i

Y +
i · Y +

j

=
Nc · Nt

N3 · (N − 1)

N
∑

i=1

(

Y +
i

)2
−

Nc · Nt

N4 · (N − 1)

N
∑

i=1

N
∑

j=1

Y +
i · Y +

j

=
Nc · Nt

N3 · (N − 1)

N
∑

i=1

(

Y +
i − Y +

)2

=
Nc · Nt

N3 · (N − 1)

N
∑

i=1

(

N

Nt

· Yi(1) +
N

Nc

· Yi(0) −

(

N

Nt

· Y (1) +
N

Nc

· Y (0)

))2

=
Nc · Nt

N3 · (N − 1)

N
∑

i=1

(

N

Nt

· Yi(1) −
N

Nt

· Y (1)

)2

+
Nc ·Nt

N3 · (N − 1)

N
∑

i=1

(

N

Nc

· Yi(0) −
N

Nc

· Y (0)

)2

+
2 · Nc · Nt

N3 · (N − 1)

N
∑

i=1

(

N

Nt

· Yi(1) −
N

Nt

· Y (1)

)

·

(

N

Nc

· Yi(0) −
N

Nc

· Y (0)

)

=
Nc

N · Nt · (N − 1)

N
∑

i=1

(

Yi(1) − Y (1)
)2

+
Nt

N ·Nc · (N − 1)

N
∑

i=1

(

Yi(0) − Y (0)
)2

+
2

N · (N − 1)

N
∑

i=1

(

Yi(1) − Y (1)
)

·
(

Yi(0) − Y (0)
)

. (B.3)

Recall the definition of S2
tc, which implies that

S2
tc =

1

N − 1

N
∑

i=1

(

Yi(1) − Y (1) −
(

Yi(0) − Y (0)
))2

=
1

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)2

+
1

N − 1

N
∑

i=1

(

Yi(0) − Y (0)
)2

−
2

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)

·
(

Yi(0) − Y (0)
)

= S2
t + S2

c −
2

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)

·
(

Yi(0) − Y (0)
)

.

Hence the expression in (B.3) is equal to

VW

(

Y
obs

t − Y
obs

c

)

=
Nc

N · Nt

· S2
t +

Nt

N · Nc

· S2
c +

1

N
·
(

S2
t + S2

c − S2
tc

)

=
S2

t

Nt

+
S2

c

Nc

−
S2

tc

N
.
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Now we investigate the bias of the Neyman estimator for the sampling variance, Vneyman, under the assump-
tion of a constant treatment effect. Assuming a constant treatment effect, S2

tc is equal to zero, so we need

only find unbiased estimators for S2
c and S2

t to provide an unbiased estimator of the variance of Y
obs
t −Y

obs
c .2

Consider the estimator

s2
t =

1

Nt − 1

∑

i:Wi=1

(

Y obs
i − Y

obs

t

)2

.

The goal is to show that the expectation of s2
t is equal to

S2
t =

1

N − 1

N
∑

i=1

(

Yi(1) − Y (1)
)2

=
N

N − 1

(

Y 2(1) −
(

Y (1)
)2
)

.

First,

s2
t =

1

Nt − 1

N
∑

i=1

1{Wi = 1} ·
(

Y obs
i − Y

obs

t

)2

=
1

Nt − 1

N
∑

i=1

1{Wi = 1} ·
(

Yi(1) − Y
obs

t

)2

=
1

Nt − 1

N
∑

i=1

1{Wi = 1} · Y 2
i (1) −

Nt

Nt − 1

(

Y
obs

t

)2

. (B.4)

Consider the expectation of the two terms in (B.4) in turn. Using again Di = 1{Wi = 1} − Nt/N , with
E[Di] = 0, we have

E

[

1

Nt − 1

N
∑

i=1

1{Wi = 1} · Y 2
i (1)

]

=
1

Nt − 1

N
∑

i=1

E

[(

Di +
Nt

N

)

· Y 2
i (1)

]

=
Nt

Nt − 1
· Y 2(1).

Next, the expectation of the second factor in the second term in (B.4):

EW

[

(

Y
obs

t

)2
]

= EW





1

N2
t

N
∑

i=1

N
∑

j=1

Wi ·Wj · Y
obs
i · Y obs

j





= EW





1

N2
t

N
∑

i=1

N
∑

j=1

Wi · Wj · Yi(1) · Yj(1)





=
1

N2
t

N
∑

i=1

N
∑

j=1

EW

[(

Di +
Nt

N

)

·

(

Dj +
Nt

N

)

· Yi(1) · Yj(1)

]

=
1

N2
t

N
∑

i=1

N
∑

j=1

Yi(1) · Yj(1) ·

(

E [Di ·Dj ] +
N2

t

N2

)

=
1

N2
t

N
∑

i=1

Y 2
i (1) ·

(

EW

[

D2
i

]

+
N2

t

N2

)

+
1

N2
t

N
∑

i=1

∑

j 6=i

Yi(1) · Yj(1) ·

(

EW [Di · Dj] +
N2

t

N2

)

2As shown in Section 6.7, if we consider our sample N as a simple random sample from an infinite

super-population, the variance of our estimator, Y
obs

t − Y
obs

c , will equal S2
c /Nc + S2

t /Nt, so again we need
only find unbiased estimators of S2

c and S2
t .
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=
1

N2
t

N
∑

i=1

Y 2
i (1) ·

(

Nc · Nt

N2
+

N2
t

N2

)

+
1

N2
t

N
∑

i=1

∑

j 6=i

Yi(1) · Yj(1) ·

(

−
Nc · Nt

N2 · (N − 1)
+

N2
t

N2

)

=
1

Nt

· Y 2(1) +
Nt − 1

N · (N − 1) · Nt

N
∑

i=1

∑

j 6=i

Yi(1) · Yj(1)

=
1

Nt

· Y 2(1) −
Nt − 1

N · (N − 1) · Nt

N
∑

i=1

Y 2
i (1) +

Nt − 1

N · (N − 1) · Nt

N
∑

i=1

N
∑

j=1

Yi(1) · Yj(1)

=
1

Nt

· Y 2(1) −
Nt − 1

(N − 1) · Nt

· Y 2(1) +
(Nt − 1) ·N

(N − 1) ·Nt

(

Y (1)
)2

=
Nc

Nt · (N − 1)
· Y 2(1) +

(Nt − 1) · N

(N − 1) · Nt

(

Y (1)
)2

Hence the expectation of the second term in (B.4) equals

−
Nc

(Nt − 1) · (N − 1)
· Y 2(1) +

N

(N − 1)
·
(

Y (1)
)2

,

and adding up the expectations of both terms in in (B.4) leads to

EW

[

s2
t

]

=
Nt

Nt − 1
· Y 2(1) −

Nc

(Nt − 1) · (N − 1)
· Y 2(1) −

N

(N − 1)
·
(

Y (1)
)2

=
N

N − 1
· Y 2(1) −

N

(N − 1)
·
(

Y (1)
)2

= S2
t .

Following the same argument,

EW

[

s2
c

]

=
1

Nc − 1
· EW

[

N
∑

i=1

(1 − Wi) ·
(

Y obs
i − Y

obs

c

)2
]

= S2
c .

Hence the estimators s2
c and s2

t are unbiased for S2
c and S2

t , and can be used to create an unbiased estimator

for the variance of Y
obs

t − Y
obs

c , our estimator of the average treatment effect.
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Notes

There was a heated discussion between Fisher and Neyman regarding the importance of the null hypothesis
of a zero average effect versus a zero effect for all units. In the reading of Neyman’s 1923 paper in the
Journal of the Royal Statistical Society on the interpretations of data from a set of agricultural experiments,
the discussion became very heated:
(Neyman) “So long as the average (italics in original) yields of any treatments are identical, the question as
to whether these treatments affect separate yields on single plots seems to be uninteresting and academic ...
”
(Fisher) “... It may be foolish, but that is what the z [FEP] test was designed for, and the only purpose for
which it has been used. ...”
(Neyman) “... I believe Professor Fisher himself described the problem of agricultural experimentation
formerly not in the same manner as he does now. ...”
(Fisher) “... Dr. Neyman thinks another test would be more important. I am not going to argue that point.
It may be that the question which Dr. Neyman thinks should be answered is more important than the one I
have proposed and attempted to answer. I suggest that before criticizing previous work it is always wise to
give enough study to the subject to understand its purpose. Failing that it is surely quite unusual to claim
to understand the purpose of previous work better than its author.”
Much of the material in this chapter draws on Neyman (1923) translated as Neyman (). See also the
comments in Rubin () on Neyman’s work in this area.
The experiment from which the data used in this chapter are drawn is described in more detail in Duflo and
Hanna (2006), and Duflo, Hanna, and Ryan (2007).
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Table 6.1: Summary Statistics for Duflo-Hanna-Ryan Teacher-Incentive Data

Control (Nc = 54) Treated (Nt = 53)
Variable avg (s.d.) avg (s.d.) min max

pretreatment pctprewritten 0.19 0.19 0.16 0.17 0.00 0.67

posttreatment open 0.58 0.19 0.80 0.13 0.00 1.00
pctpostwritten 0.47 0.19 0.52 0.23 0.05 0.92
written 0.92 0.45 1.09 0.42 0.07 2.22
written all 0.46 0.32 0.60 0.39 0.04 1.43



34

Table 6.2: Estimates for Effect of Teacher Incentives on Proportion of Days

that School is Open

Estimated Means Y
obs

c 0.58

Y
obs

t 0.80
τ̂ 0.22

Estimated Variance Components s2
c 0.192

s2
t 0.132

s2 0.162

Nc 54
Nt 53

Sampling Variance Estimates V̂neyman = s2
c

Nc

+
s2

t

Nt

0.032

V̂const = s2 ·
(

1
Nc

+ 1
Nt

)

0.032

V̂ρtc=1 = s2
c ·

Nt

N ·Nc

+ s2
t ·

Nc

N ·Nt

+ sc · st ·
2
N

0.032

Table 6.3: Estimates of, and Confidence Intervals for, Average Treatment

Effects for Duflo-Hanna-Ryan Teacher-Incentive Data

ate (s.e.) 95% c.i.

pretreatment pctprewritten -0.03 (0.04) [-0.10,0.04]

posttreatment open 0.22 (0.03) [0.15,0.28]
pctpostwritten 0.05 (0.04) [-0.03,0.13]
written 0.17 (0.08) [0.00,0.34]
written all 0.14 (0.07) [0.00,0.28]
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Table 6.4: Estimates of, and Confidence Intervals for, Average Treatment

Effects for Duflo-Hanna-Ryan Teacher-Incentive Data

pctprewritten = 0 pctprewritten> 0 Difference
(N = 40) (N = 67)

variable τ̂ (s.e.) 95% c.i. τ̂ (s.e.) 95% c.i. est (s.e.) 95% c.i.

open 0.23 (0.05) [0.14,0.32] 0.21 (0.04) [0.13,0.29] 0.02 (0.06) [-0.10,0.14]

pctpostwritten -.004 0.06 [-0.16,0.07] 0.11 (0.05) [0.01,0.21] -0.15 (0.08) [-0.31,0.00]

written 0.20 (0.10) [0.00,0.40] 0.18 (0.10) [-0.03,0.38] 0.03 (0.15) [-0.26,0.31]

written all 0.04 (0.07) [-0.10,0.19] 0.22 (0.09) [0.04,0.40] -0.18 (0.12) [-0.41,0.05]


