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Summary. An instrument or instrumental variable manipulates a treatment and affects the out-
come only indirectly through its manipulation of the treatment. For instance, encouragement to
exercise might increase cardiovascular fitness, but only indirectly to the extent that it increases
exercise. If instrument levels are randomly assigned to individuals, then the instrument may
permit consistent estimation of the effects caused by the treatment, even though the treatment
assignment itself is far from random. For instance, one can conduct a randomized experiment
assigning some subjects to ‘encouragement to exercise’ and others to ‘no encouragement’ but,
for reasons of habit or taste, some subjects will not exercise when encouraged and others will
exercise without encouragement; none-the-less, such an instrument aids in estimating the effect
of exercise. Instruments that are weak, i.e. instruments that have only a slight effect on the treat-
ment, present inferential problems.We evaluate a recent proposal for permutation inference with
an instrumental variable in four ways: using Angrist and Krueger’s data on the effects of educa-
tion on earnings using quarter of birth as an instrument, following Bound, Jaeger and Baker in
using simulated independent observations in place of the instrument in Angrist and Krueger’s
data, using entirely simulated data in which correct answers are known and finally using sta-
tistical theory to show that only permutation inferences maintain correct coverage rates. The
permutation inferences perform well in both easy and hard cases, with weak instruments, as
well as with long-tailed responses.

Keywords: Hodges–Lehmann estimate; Instrumental variable; Observational study;
Permutation test; Randomization test

1. Introduction: the need for greater realism with weak instruments

1.1. Instrumental variables: definition, goal and finding instruments
Instrumental variable analyses are designed to estimate effects of treatments when the level of
the treatment is confounded by unobserved covariates that cannot be controlled by adjustments.
An instrument manipulates a treatment without fully controlling it, but the instrument itself
does not have effect beyond its manipulation of the treatment. For a recent survey of instrumen-
tal variables from several perspectives, see Angrist et al. (1996) and the associated discussion by
Robins, Greenland, Heckman, Moffitt and Rosenbaum.

In a simple experiment, the experimenter manipulates the treatment, assigning it to subjects
at random, and the treatment has effects. Here, the treatment is playing two roles: it is both what
the experimenter manipulates and also the effectual aspect of that manipulation. The notion of
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an instrumental variable separates these two roles: the experimenter manipulates the instrument,
perhaps encouragement to exercise, but believes that it is not the instrument, not encourage-
ment, but rather another measured quantity, the treatment, exercise, that affects cardiovascular
health. Here, the experimenter is interested in the effects of the treatment itself but has only a
partial indirect influence over the level of treatment that is received.

In practice, instruments are most commonly used in observational studies of treatments,
not experiments, in settings in which subjects select their own treatments, often with specific
goals in mind. Because the treatments are self-inflicted, the individuals who choose one treat-
ment are often very different, before treatment, from the individuals who choose another.
The example in this paper concerns additional schooling, which to a large extent is deter-
mined by an individual’s own preferences and decisions. People who stay in school longer,
obtaining advanced degrees, may reap economic benefits arising from additional education,
but they may also reap economic benefits from the ambition, perseverance or talent that led
them initially to stay in school longer. Measures of ambition, perseverance and talent are at
best imperfect and are often unavailable. In this context, an instrument is something of no
direct economic consequence, something unrelated to ambition, perseverance and talent, but
something that lengthens education for some and shortens it for others. What might that be?

Finding instruments is an art rather than a science, and Angrist and Krueger (2001) have
surveyed a variety of interesting and suggestive examples, from lotteries to administrative pol-
icy discontinuities to accidents of birth. Even in the best of situations, the assumptions that are
required for an instrument are plausible, not certain. For instance, although one might plau-
sibly expect encouragement to exercise to affect cardiovascular health only indirectly through
exercise, that might not be true. If encouragement emphasizes future health benefits, pride,
self-discipline, physical attractiveness, etc., then encouragement that is not heeded might lead
to anxiety about future illness, stress, a sense of failure or defeat, and these might possibly affect
cardiovascular health. If the assumptions are merely plausible, not certain, then of what value
are efforts to find instrumental variables?

There are two issues, both important. First and more obviously, the use of an appropriate
instrument in a difficult setting is intended to replace an implausible assumption by a plau-
sible assumption, albeit not a certain assumption. Second, and arguably more importantly,
compare two sequences of studies of the same self-inflicted treatment: one sequence without
instruments comparing treated with untreated; the other sequence using a variety of different
instruments to manipulate the treatment. Throughout the first sequence, the comparison is likely
to be biased in the same way. A repeated finding that people with more education earn more
than people with less education does little to isolate the effects that are caused by education
from the consequences of unmeasured ambition, perseverance and talent that led to extended
education—the same bias appears repeatedly. However, if different instruments are used to
manipulate education—a lottery, a temporal discontinuity in educational policy or a regional
discontinuity in educational policy—and if each instrument is plausible but not certain, there
may be no reason why these different instruments should be biased in the same direction. In
replicating observational studies, the goal is to replicate whatever treatment effects may exist
without replicating whatever biases may coexist (Rosenbaum, 2001), and this goal is sometimes
achievable by using a variety of instruments or adjustment strategies subject to different biases.
The literature in labour economics on estimating the returns to education is a nice example of
this, where researchers have used instrumental variables strategies (e.g. compulsory schooling
laws as in the current paper or distance to educational institutions), as well as strategies that are
based on direct adjustment by using cleverly selected samples (e.g. twins); see Card (2001) for
an overview.
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1.2. Strong instruments: non-compliance in trials and the draft lottery
One of the most compelling instances of an instrument occurs in randomized trials with
non-compliance (e.g. Sommer and Zeger (1991), Sheiner and Rubin (1995), Goetghebeur and
Molenberghs (1996), Imbens and Rubin (1997) and Heitjan (1999)). Here, the instrument—the
assigned treatment—is truly random; however, the assigned treatment influences, but does not
completely determine, the treatment that is actually received. Holland (1988) has called this
an encouragement design: subjects are randomly selected and encouraged to take the treat-
ment, but it is the effects of the treatment itself, not the effects of encouragement, which are
of interest; see also Zelen (1979). Randomization of the instrument is not, by itself, sufficient;
to be valid, an instrument must affect the outcome only by manipulating the treatment—for
example, encouragement must not have effects of its own. When subjects are assigned to one of
two conditions, treatment or control, and receive one of two conditions, treatment or control,
it is tempting to estimate the treatment effect as the typical or mean difference in outcomes
in two groups, suitably defined; however, this does not generally work. It is easy to show the
following.

(a) If the assigned treatment is ignored, then the mean difference in outcomes in groups
defined by the treatment received can be severely biased as an estimate of the effect
caused by the treatment.

(b) If non-compliers—those who did not follow the assignment that they received—are set
aside, and the two groups are defined by acceptance of the treatment to which they
were assigned—so-called per protocol analysis—then the mean difference in outcomes in
these two groups can again be severely biased for the treatment effect (Sheiner and Rubin,
1995).

(c) If the two groups are defined by the assigned treatment, ignoring the treatment that they
received—the so-called intent-to-treat analysis—then a comparison of the two groups
provides a valid test of no effect, but it can substantially underestimate the effects of the
treatment, because many people who were assigned to the treatment did not receive it.

(d) In contrast, methods that do not compare two groups, methods that use both the assigned
treatment and the received treatment in different roles—the instrumental variable analy-
sis—can continue to use randomization at the ‘reasoned basis for inference’, in Fisher’s
(1935) phrase, while yielding an undiluted estimate of the treatment effect (Rosenbaum
(1996, 1999), Rosenbaum (2002a), chapter 5, and Rosenbaum (2002b)). The approach,
which is developed in a slightly more general context in Section 3.2, says that the treat-
ment effect is a function of the treatment that is actually received, and once that effect
has been removed from responses the responses are independent of the treatment that
was randomly assigned.

A compelling example of an observational or non-randomized study using an instrument is
Angrist’s (1990) study of the effects of military service during the Vietnam War and its effects
on lifetime earnings. Angrist used the draft lottery number as an instrument for the actual treat-
ment, military service. As in the case of assignment in randomized trials with non-compliance,
the draft lottery was essentially random, and it encouraged but did not determine military
service, because of volunteers and draft evaders.

In observational studies, although we try to find an instrument, such as the draft lottery,
that is not biased in its assignment to subjects, the possibility remains that even the instru-
ment is not randomly assigned. This possibility is addressed through sensitivity analyses, which
are discussed and illustrated in Rosenbaum (1996, 1999), Rosenbaum (2002a), chapter 5, and
Rosenbaum (2002b) but will not be further discussed here.
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An instrument is weak if manipulation of the instrument has only a slight effect on the treat-
ment (Staiger and Stock, 1997). Weak instruments are common but create inferential problems
that we address in the current paper.

1.3. Weak instruments: quarter of birth and education
Angrist and Krueger (1991) found a clever but weak instrument for years of schooling. School
years begin in September, but children are born all year long, so children throughout a 1-year
period all begin school together in September. Some students may drop out of school as soon
as the law allows, typically when they reach a specified age. This means that a child’s month
or quarter of birth may force one child to attend school for up to a year longer than another.
The instrument, quarter of birth, is plausibly haphazard, but the treatment itself, total years
of schooling, is subject to severe systematic biases. The instrument is quite weak, adding on
average a tenth of a year of schooling. None-the-less, Angrist and Krueger (1991) showed that
both years of schooling and earnings do track quarter of birth in the zigzag pattern that is
consistent with their argument.

Angrist and Krueger (1991) did a variety of analyses, some of which have held up well over
the years, but others have been subjected to sharp yet illuminating criticism. Their simplest
analyses incorporated a single instrument, quarter of birth, using Wald’s (1940) estimator. In
the Wald estimator, the mean difference in log-earnings in two quarters is divided by the mean
difference in years of education. Angrist and Krueger found about a 7% increase in earnings
for a year of schooling by using the 1970 census data for men born between 1920 and 1929.
That analysis has held up fairly well. They then built two simultaneous equations for educa-
tion and log-earnings, with numerous indicator variables for states and years, fitting these by
two-stage least squares (TSLS) with many instruments created by interacting quarter of birth
with year and state of birth. These analyses have generated debate. Bound et al. (1995) replaced
the actual instruments, the quarter-of-birth dummy variables, by useless, randomly generated
values in some of the TSLS regressions, but none-the-less obtained qualitatively similar results,
with small standard errors and short confidence intervals, suggesting that the TSLS estimates
can be highly misleading. In Section 2, we review Angrist and Krueger’s study, and in Section 4
we apply our approach to their data.

1.4. Two problems with a weak instrument
Weak instruments present two entirely distinct problems. First, if the instrument is extremely
weak, it may provide little or no useful information. An accurate method of analysis will correctly
report this. Some commonly used statistical methods for instrumental variables are not accurate
in this sense, and this is the second problem. With weak instruments, asymptotic approximations
for standard errors and confidence intervals often wrongly suggest that an unstable estimate is
very stable.

Commonly used methods assume that the problem is identified and apply asymptotic theory,
but this asymptotic theory is inapplicable with an uninformative instrument, and it performs
poorly when the instrument is weak. Nelson and Startz (1990) and Maddala and Jeong (1992)
demonstrated substantial deviations of finite sample and asymptotic distributions of instrumen-
tal variable estimates, and Bound et al. (1995) illustrated this with the quarter-of-birth data.
Han and Schmidt (2001) showed that, with irrelevant instruments, instrumental variable esti-
mates are asymptotically centred on least squares estimates. Various improvements have been
proposed, including the alternative asymptotics of Bekker (1994) and Staiger and Stock (1996),
the jackknife methods of Angrist and Krueger (1995) and Angrist et al. (1999), the tests based
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on the pivotal statistics of Kleibergen (2002) and Moreira (2003) and the hierarchical Bayes
methods of Chamberlain and Imbens (1996).

In this paper we examine the performance with weak instruments of an alternative approach,
a slight extension of the procedure that was proposed in Rosenbaum (1996, 1999), Rosenbaum
(2002a), chapter 5, and Rosenbaum (2002b). The method solves the second problem, the prob-
lem with statistical methods, although of course it does not solve the first problem—it cannot
make uninformative data informative.

1.5. Outline of the paper: quarter-of-birth example, simulation and theory
After reviewing aspects of Angrist and Krueger’s (1991) quarter-of-birth data in Section 2, the
current paper evaluates the performance of this permutation approach in four ways. A slightly
extended version of the method is defined in Section 3, and then, in Section 4, we apply the
method to Angrist and Krueger’s quarter-of-birth data. We also follow Bound et al. (1995),
creating a non-informative variant of the quarter-of-birth data. In both sets of data, the method
does well. With the actual data of Angrist and Krueger (1991), the permutation analysis analo-
gous to the Wald estimator yields a confidence interval that is quite short, not unlike the interval
that was found by Angrist and Krueger. However, with a useless instrument, the 95% confi-
dence intervals are wide and uninformative, as they should be when identification is lacking.
When adjustments are made for state and year with the real quarter-of-birth data, the interval
is informative, but longer than Angrist and Krueger’s interval, a finding that is consistent with
the discussion of Bound et al. (1995).

A small simulation is presented in Section 5. The simulation covers various settings, including
some where standard inference performs poorly similarly to those studied by Nelson and Startz
(1990) and Maddala and Jeong (1992). We find that the permutation method performs very well
in a wide range of settings, with the asymptotic approximations very accurate even with weak
instruments, and power high compared with that for TSLS methods when error distributions
are thick tailed.

Finally, in Section 6, we show that the only accurate, nonparametric methods for instrumental
variables are permutation methods. The result is a slight extension of a famous theorem due to
Lehmann and Stein (1949) and Lehmann (1959), section 5.7, who considered the case in which
the treatment, not the instrument, is randomized.

2. Review: Angrist and Krueger’s (1991) study of the returns to education

2.1. Data and assumptions: census microdata, identification and the exclusion
restriction
Angrist and Krueger (1991) used data from the public use data files, describing samples of indi-
viduals, from the US censuses of 1960, 1970 and 1980, with sample sizes that were greater than
200000 for men born between 1920 and 1929, greater than 300000 for men born between 1930
and 1939 and greater than 400000 for men born between 1940 and 1949; however, the relevant
sample size varies somewhat depending on the details of the different analyses that they per-
formed. They also obtained data from the 50 states and the District of Columbia concerning
laws about compulsory school attendance in 1960, 1970 and 1980.

Angrist and Krueger (1991) carefully built an argument claiming that laws which require
students to begin school in September but to attend school until a particular birthday, say the
16th birthday, are the cause of a small amount of variation in the number of years of school
attended. The claim is that some students drop out of school as soon as the law allows, with
a few months less education for students who are a few months older. First, they showed that
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the mean years of schooling follows a saw-tooth pattern, typically dipping down in the first
quarter of the year, for the oldest students in a given annual class. Second, they showed that this
pattern largely disappears when attention focuses on subsamples who completed high school,
college or advanced degrees, suggesting that quarter of birth matters only during high school,
not subsequently. Third, they compared states which require different birth dates (16th versus
17th or 18th) and students of different ages, demonstrating that a decline in enrolment abruptly
occurs at the minimum legal age for leaving school. This first claim—that the quarter of birth
causes a small amount of variation in years of education due to the structure of minimum age
laws—has been largely undisputed in subsequent literature.

A second claim is required if quarter of birth is to be an instrument, namely the exclusion
restriction, which asserts that the quarter of birth is related to earnings only because it affects
years of education. For instance, an obvious concern is that children who are born in the first
quarter are a few months older than other children who enter school at the same time, and at
very young ages a difference of a few months might be an advantage in performance in school;
see Halliwell (1966), Angrist and Krueger (1991) and Bound et al. (1995). However, such an
effect would predict higher earnings for the children who were born in the first quarter, whereas
the effect of compulsory schooling laws would predict lower earnings for the first quarter, and
Angrist and Krueger (1991) found lower earnings in the first quarter. As a result, if there is a
bias due to age, Angrist and Krueger (1991), page 1007, suggested that the bias would lead to
underestimates of the returns to schooling. In addition, Angrist and Krueger (1991), page 1008,
showed that quarter of birth predicts earnings for the population, but not in the subpopulation
of college graduates; this pattern is not easily explained by the claim that being a little older at
the start of schooling has substantial, long lasting effects on school performance.

2.2. Analytical tools: Wald’s estimate and two-stage least squares
In TSLS, the so-called ‘endogenous’ variable, here years of education, is first regressed on the
instrument or instruments, here quarter of birth, together with exogenous variables, such as age
or state. Then the dependent variable, here log-earnings, is regressed on the fitted values of the
endogenous variable, here years of education as predicted by quarter of birth, together with
the exogenous variables; see Amemiya (1985) for general discussion. When the instrument is a
single binary variable and there are no other exogenous variables, Durbin (1954) showed that
TSLS is the same as Wald’s (1940) method of fitting a line when the predictor is subject to error.

In Angrist and Krueger (1991), the economic return to an additional year of schooling is
estimated several times, always by using TSLS. In their simplest application of the method, they
compared men who had been born in the first quarter with other men by using Wald’s estimator,
producing an estimated 10.2% increase in weekly wages for a year of additional education, with
an estimated standard error of about ±2:4% for 327509 men in the 1980 census who were born
between 1930 and 1939. The claim that quarter of birth is an instrument is more plausible within
fairly homogeneous cohorts of men, say men born in the same year in the same state, so that

‘the variability in education used to identify the return to education in the TSLS estimates is solely due
to differences by season of birth’

(Angrist and Krueger (1991), page 1004). In one of several similar analyses, Angrist and Krueger
included indicators of year of birth and state of birth, as well as age (measured in quarters) and
age2, with 30 instruments formed as the product of year-of-birth indicators and quarter-of-
birth indicators, and 150 instruments formed as the product of state-of-birth indicators and
quarter-of-birth indicators. Using this approach, Angrist and Krueger (1991), Table VII, col-
umn 4, reported an estimated 9.1% increase in weekly wage per year of education with a standard
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error of ±1:1%, so the point estimate is changed only slightly, but the standard error is reduced
by more than 50%. From this, it appears that the use of many instruments in TSLS has con-
firmed the magnitude of the simpler Wald estimate but has greatly enhanced precision. Is this
appearance accurate?

Bound et al. (1995), pages 448–449, raised concerns about TSLS with many weak instru-
ments. Specifically, using exactly the same data, they replaced the quarter-of-birth informa-
tion by entirely irrelevant random numbers, which should be useless for estimating the
return to education, repeating this process 500 times, applying TSLS each time, obtaining a
mean estimated return of a 6.0% increase in weekly wages for a year of additional education,
with an estimated standard error of about ±1:5%. Moreover, by varying the instruments,
they found greater apparent precision with more instruments than with fewer instruments,
even though the instruments are all just irrelevant random noise. Clearly, something went
wrong.

In the second stage of TSLS, as the number of instruments increases, the fitted years of edu-
cation increasingly resembles the actual years of education, and the TSLS estimate increasingly
resembles the usual least squares regression of wages on years of education. This particular
problem with TSLS is purely technical. A confidence interval promised a certain rate of cover-
age and failed because the associated asymptotic approximations are poor when the instrument
is weak. It is this technical problem that the literature on weak instruments (e.g. Staiger and
Stock (1997), Kleibergen (2002) and Moreira (2003)) is concerned with, and that we address in
the current paper by using randomization inference. We return to the quarter-of-birth data in
Section 4 after defining the proposed method in Section 3.

3. Review: randomization inference with an instrument

3.1. Notation: strata, responses and instruments
There are S strata, s = 1, . . . , S, with ns subjects in stratum s and N =n1 + . . . +nS subjects in
total. There is dose of treatment d, with one value labelled ‘0’ signifying the ‘control’ or reference
level. The ith subject in stratum s would exhibit response rCsi if this subject received the control
dose, d =0, and would exhibit response rdsi if this subject received dose d. In the current paper,
the effect of receiving dose d rather than the control dose d =0 is assumed to be proportional to
the dose, rdsi − rCsi =βd. In Angrist’s (1990) study of the draft, d is a binary variable indicating
military service. In Angrist and Krueger (1991), d is years of education beyond the minimum
that are required by law.

In stratum s there is a preset, sorted, fixed list of ns instrument settings, hsj, j =1, . . . , ns, with
hsj �hs,j+1 for each s and j. Write h = .h11, h12, . . . , h1,n1 , h21, . . . , hS,nS /T. In the draft lottery
in Angrist (1990), there is only one stratum, S =1, and 0=h11 = . . .=h1k and 1=h1,k+1 = . . .=
h1,n1 , where the draft lottery would divide the n1 men who were eligible for the draft into k who
were not drafted and n1 −k who were drafted. Instrument settings in h are randomly permuted
within strata and assigned to subjects, i.e. the lottery picked draftees at random. An assignment
of instrument settings, z, is z=ph where p is a stratified permutation matrix, i.e. an N ×N block
diagonal matrix with S blocks, p1, . . . , pS . Block ps is an ns ×ns permutation matrix, i.e. ps is a
matrix of 0s and 1s such that each row and each column sum to 1. Let Ω be the set of all stratified
permutation matrices p, so Ω is a set containing |Ω|=ΠS

s=1 ns! matrices, where |Ω| denotes the
number of elements of the set Ω. Pick a random P from Ω where Pr.P = p/ = 1=|Ω| for each
p ∈Ω. Then Z = Ph is a random permutation of h within strata, so the ith subject in stratum s

received instrument setting Zsi. In effect, the draft lottery picked P∈Ω at random and computed
Z=Ph, and drafted the n1 − k men with Z1i =1. Violations of random instrument settings are
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addressed by sensitivity analysis; see Rosenbaum (1999), Rosenbaum (2002a), chapter 5, and
Rosenbaum (2002b).

For each such instrument setting z there is a dose dsiz that would be received by the ith subject
in stratum s, who then exhibits response rCsi +βdsiz. In Angrist (1990), for a given pattern of
draft lottery results, z, the variable d1iz indicates whether the ith man would serve in the military.
Write Dsi for the dose that is exhibited by the ith subject in stratum s, so Dsi =dsiZ, and let Rsi be
the response that is observed from this subject, so Rsi = rCsi +βDsi. Write D= .D11, . . . , DS,nS /T

and R = .R11, . . . , RS,nS /T.
In randomization inference, as developed by Fisher (1935) and later researchers (e.g. Pitman

(1937), Welch (1937), Kempthorne (1955), Wilk (1955), Cox (1958), Robinson (1973), Tukey
(1985), Gail et al. (1988) and Cox and Reid (2000)), a quantity whose value is determined by the
random choice of P from Ω is a random variable because P is random. In contrast, a quantity
that is not affected by the random choice of P from Ω is a fixed quantity describing the finite
population of N subjects. For instance, the observed response R is a random variable because
it depends on D which in turn depends on the random instrument settings Z = Ph; however,
the potential response rCsi that a subject would exhibit at dose 0 does not change with P and
so is fixed. In this way, randomization creates the probability distributions that are used in
inference and is the ‘reasoned basis for inference’ in randomized experiments, in Fisher’s (1935)
phrase. For an alternative view, see Sections 5 and 6. In contrast, in most econometric analyses
with weak instruments, the potential responses rCsi are viewed as random, and the analysis is
conditional on the instruments Z (e.g. Staiger and Stock (1997)).

3.2. Randomization inference
Consider testing the hypothesis H0 : β = β0. Let q.·/ be some method of scoring responses,
such as their ranks within strata or the aligned ranks of Hodges and Lehmann (1962), and let
ρ.Z/ be some way of scoring the instrument settings such that ρ.ph/ = p ρ.h/ for each p ∈Ω,
e.g. Rosenbaum (1991). The test statistic is T = q.R −β0D/T ρ.Z/ and, for appropriate scores,
T can be Wilcoxon’s stratified rank sum statistic, the Hodges–Lehmann aligned rank statistic,
the stratified Spearman rank correlation or the stratified version of Mood’s median test statistic.

If H0 were true, then R − β0D = rC would be fixed, not varying with Z, so q.R − β0D/ =
q.rC/ = q, say, would also be fixed. If the null hypothesis were false, β �= β0, then R − β0D =
rC + .β −β0/D continues to be related to the dose D, and possibly as a consequence related to
the instruments Z. We hope to recognize a correct or approximately correct value β0 for β by
an absence of a relationship between R −β0D and Z.

An exact test of hypothesis H0 :β =β0 computes q.R−β0D/, which is the fixed value q=q.rC/

if H0 is true, in which case T =qTP ρ.h/. The chance that T � t under H0 is simply the proportion
of p∈Ω such that qTp ρ.h/� t, or

|{p∈Ω : qTp ρ.h/� t}|
|Ω| : .1/

Using the known null distribution (1) of T , an exact, distribution-free 100.1−α/% confidence
set for β is the set of all hypotheses H0 :β =β0 that are not rejected at level α. Moreover, as we
discuss in Section 6, this is the only basis for distribution-free inference. Typically, this confi-
dence set is formed by rejecting hypothesis H0 for either large or small T with each tail having
null probability α=2 by expression (1).

The exact confidence set addresses the issue of identification in a natural way. The exact
100.1 −α/% confidence set for β always has coverage 100.1 −α/% but, when identification is
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absent, so that the data are without useful information, the interval may achieve this coverage
by becoming infinite in length. Nonparametric confidence intervals of infinite length are not
new: the 95% confidence set for the upper 1% point of a distribution based on an independent
and identically distributed sample of size 20 will of necessity not be a finite interval, but rather
a half-line, correctly reflecting the obvious fact that 20 observations place a lower limit but not
an upper limit on the upper 1% point of an unspecified distribution. Weak identification may
result in a very long confidence set. An attractive feature of the method is that speculation about
identification is replaced by a confidence set that is long or short depending on the evidence that
is actually available in the data at hand.

If identification is lacking because the instruments are irrelevant, then the exact 100.1−α/%
confidence set for β derived from expression (1) will none-the-less maintain its stated coverage
of 100.1−α/%. The confidence set may do this by including the entire real line, but it need not
include the entire real line. The promise, after all, is not coverage 100% of the time, but rather
100.1−α/% coverage.

The confidence set can be empty: the test may reject every value of β0, i.e. R −β0D may be
significantly related to the instrument Z for every choice of β0. This is strong evidence of a
specification error, i.e. evidence that the effect of the treatment is not correctly modelled by a
multiple of dose, perhaps because the exclusion restriction is false, so that the instrument directly
affects the response. Indeed, the rule—reject the specification if the confidence set is empty—is
a particular type of exact specification test, one that falsely rejects a correct specification with
probability at most α.

The exact confidence set for β derived from expression (1) will often be an interval, but it
need not be. If we desire an interval, we can define the 100.1−α/% confidence interval to be the
shortest interval that includes the 100.1 −α/% confidence set—adding points to a confidence
set cannot decrease its coverage probability.

3.3. Exact moments and approximate distributions
The expectation and variance of T in proposition 1 are used in

(a) a large sample approximation to the null distribution of T and
(b) the estimating equation that defines the Hodges and Lehmann (1963) estimate of β: essen-

tially, we solve T =E.T/ for β; see Hodges and Lehmann (1963) for details. The proof is
analogous to that of theorem 3.3.3 of Hájek et al. (1999) and is omitted.

Proposition 1. Under the null hypothesis H0 : β = β0, the expectation and variance of T =
qT ρ.Z/ with q =q.R −β0D/ are

E.T/=µ=
S∑

s=1
q̄sρ̄s, .2/

and

var.T/=σ2 =
S∑

s=1

1
ns −1

{
ns∑

i=1
.qsi − q̄s/

2
}

ns∑
i=1

.ρsi − ρ̄s/
2, .3/

where q̄s = .1=ns/Σ
ns

i=1 qsi and ρ̄s = .1=ns/Σ
ns

i=1 ρsi.

In large samples, with either a few large strata or many small strata, .T −µ/ =σ is approxi-
mately standard normal under very mild conditions on the rank score functions q.·/ and ρ.·/.
(Formally, if each ns →∞, with S fixed, then apply theorem 6.1.1 of Hájek et al. (1999), whereas,
if N →∞ and S →∞ with ns bounded, then apply standard central limit theorems.)
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The limiting normal null distribution of .T −µ/ =σ is based on the limiting properties of per-
mutation tests and does not depend on whether β is identified. Identification only arises when
the test is inverted to obtain confidence intervals and point estimates, which may not behave as if
constructed from an asymptotically normal estimate of β. In particular, without identification,
confidence intervals may include the entire real line, and the moment equation that defines the
Hodges–Lehmann estimate may admit a wide range of solutions. Weak or absent identification
does not disrupt the asymptotic normal null distribution of the test statistic, so inferences that
are based on this distribution remain valid, but inversion of the distribution to make inferences
about β may reveal that the data provide little or no information about β.

4. An application to the Angrist–Krueger quarter-of-birth data

We apply the permutation method to estimate returns to schooling in the data of Angrist and
Krueger (1991). There is an absolute minimum number δ of years of schooling that every student
in a state must have, regardless of birth date; however, because birth dates vary, individual stu-
dents are required to attend between δ and δ+1 years of schooling, with most students receiving
many years more than required.

Let D be the number of years of schooling beyond δ. Let R be log-earnings actually achieved
with D + δ years of schooling, and let rC be log-earnings with δ years of schooling. Angrist
and Krueger (1991) focused on a model in which log-earnings increase linearly with years of
schooling, so that R = rC + βD. The log-transformation is motivated by technical and con-
ceptual issues. The distribution of earnings is extremely skewed, with a small number of men
earning very large amounts, and the log-transformation reduces the skewness. On the log-scale,
the coefficient β may be interpreted as a relative increase or rate of return to a year of education.
If log-earnings R are regressed on years of schooling, D+ δ, the estimated coefficient is 0.0709
with standard error 0.0003. This suggests that we predict about 7% higher earnings associated
with an additional year of schooling; however, this prediction does not distinguish the effect of
schooling on earnings from the tendency of brighter, wealthier, better motivated students both
to stay in school and subsequently to earn more.

Angrist and Krueger (1991) used quarter-of-birth indicators, denoted by z, as an instrument,
and used census data for estimation. In this section we use their data on 329509 men born
between 1930 and 1939. We observe their years of schooling, D, log-earnings in 1980, R, and
state and year of birth. The mean number of years of education is 12.75. The instrument that
we use is an indicator for being born in the fourth quarter of the year, which is 1 for 24.5% of
men and 0 for the rest. If the number of years of education is regressed on this quarter-of-birth
indicator, the least squares regression coefficient is 0.092 with standard error 0.013, so being
born in the fourth quarter of the year is associated with, on average, about a tenth of a year
of additional education, an association that is small but clearly not due to chance. Moreover,
if log-earnings are regressed on the quarter-of-birth indicator, the coefficient is 0.0068 with
standard error 0.0027, so being born in the fourth quarter is associated with about 2

3 % higher
earnings, which is a very weak relationship.

First we consider estimators ignoring information on year and state of birth in Table 1. Table 1
gives the point estimate β̂, the upper and lower end points of the 95% confidence interval and
a pseudostandard error. For the permutation procedures, β̂ is the Hodges–Lehmann estimate,
and the confidence interval is based on the large sample approximation in Section 3.3. The ‘stan-
dard error’ is the length of the confidence interval divided by 2×1:96, so it focuses attention on
the length rather than the location of the confidence intervals. For instance, conventional TSLS
estimates about 7.4% higher earnings with an additional year of schooling, although the confi-
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Table 1. Comparison of instrumental variable estimates without covariates in
the quarter-of-birth data

Procedure β̂ 95% confidence 95% confidence ‘Standard
interval low interval high error’

TSLS 0.074 0.019 0.129 0.028
Permute log-earnings 0.073 0.017 0.132 0.029
Permute ranks 0.058 0.014 0.102 0.023

Table 2. Comparison of instrumental variable estimates with year and state
covariates in the quarter-of-birth data

Procedure β̂ 95% confidence 95% confidence ‘Standard
interval low interval high error’

TSLS 0.074 0.058 0.090 0.008
Permute log-earnings 0.077 0.036 0.139 0.026
Permute ranks 0.067 −0.015 0.162 0.045

dence interval ranges from about 2% to about 13%. The three estimates are quite similar, but the
rank estimates are slightly lower, with a slightly narrower confidence interval, perhaps because
of some individuals with extremely high log-earnings. Combined with what we know from the
simulations in Bound et al. (1995), Table 1 suggests that all three estimates are performing
reasonably, as theory suggests they should.

Table 2 adjusts for differences in year of birth and state. Because lifetime earnings and educa-
tion vary with both state and cohort, we would be hesitant to attribute to education variations
in earnings that could be predicted from state and year. In the first row of Table 2, TSLS esti-
mates were performed as in Angrist and Krueger (1991), with state and year dummy variables
as covariates and interactions of these dummy variables with the quarter-of-birth variable as
additional instruments. Now it is well documented in the literature that adding many instru-
ments in this way inaccurately appears to increase the precision—see Bound et al. (1995) and
Staiger and Stock (1997)—so the much narrower confidence interval here is neither a surprise
nor a comfort. The two randomization-based estimators take account of the covariates by using
the permutation distribution within strata defined by year and state. The randomization-based
confidence intervals are not extremely narrow, and the rank-based interval includes slightly
negative returns as well as markedly positive returns to a year of schooling. If we believed the
rank-based intervals, it would suggest that the pattern in Table 1 might be due to variations in
earnings and education that can be predicted from state and year alone.

In Table 3, we replace the actual quarter-of-birth variable by a randomly generated instru-
ment that carries no information because it is unrelated to years of education. With a useless
instrument, the data contain no information about β, and an accurate method would report this.
As first reported by Bound et al. (1995), the TSLS estimate incorrectly suggests that the data
are informative, indeed, very informative when there are many instruments. The randomiza-
tion-based estimators show no such spurious precision: in all cases the 95% confidence intervals
include all values between −1 and 1. (The interval [−1, 1] for β is extremely long and entirely
uninformative: if β = 1, then completing 4 years of college would raise earnings by a factor of



120 G. W. Imbens and P. R. Rosenbaum

Table 3. Comparison of instrumental variable
estimates with uninformative data†

Procedure 95% confidence interval

Without covariates
TSLS [−0:109, 0:648]
Permute log-earnings Includes [−1, 1]
Permute ranks Includes [−1, 1]

With state and year covariates
TSLS [0:042, 0:078]
Permute log-earnings Includes [−1, 1]
Permute ranks Includes [−1, 1]

†Permutation methods reveal that the data contain
no information, but TSLS is misleading.

exp.4β/=54:6 times the earnings of a high school graduate, so a college education would raise
a minimum wage of perhaps $10000 per year to more than $500000, which of course it does not;
a doctoral degree taking 8 years beyond high school would yield $30 million per year; similarly,
β =−1 would reduce $10000 to $183 per year as a consequence of 4 years of college.)

Fig. 1 presents the same story graphically, again indicating that permutation methods cor-
rectly reflect the absence of information in the random data, whereas TSLS misleadingly sug-
gests that information is present. Fig. 1 presents the .T −µ/2 =σ2 for randomization inferences
or .β̂ −β0/2=v̂ar.β̂/ for TSLS as a function of the parameter value β0 for four of the leading
cases (random versus real data, no covariates versus state and year dummy variables). The full
horizontal line is at 3:84=1:962, and if .T −µ/2=σ2 �3:84 then the corresponding value of β0 is
not rejected at the 0.05-level and is in the 95% confidence interval. In Fig. 1(d), with the random
quarter of birth data, the test statistic is very flat as a function of the parameter value for the
permutation tests, correctly reflecting the absence of information, whereas it is very curved for
TSLS with many instruments, incorrectly suggesting that the random data are informative.

5. A small simulation: weak instruments and long tails

In this section we study the performance of the test statistic in a controlled environment. We
consider a standard two-simultaneous-equation model

R= rC +βD,

D=γz+ν,

where .ν, rC/ are independent of the instrument z but, because of the potential correlation
between rC and ν, the potential response under control, rC, is not necessarily independent of
the dose D, as it would be if doses had been randomly assigned. (Incidentally, with the model
just identified, the TSLS estimator is identical to the limited information maximum likelihood
estimator, so the simulation covers one instance of both types of estimator.) We focus on the
power function of the test of the null hypothesis β =β0, as a function of β0. The first test that
we consider is the usual test based on the normal approximation to the distribution of the TSLS
estimator. In addition we consider two versions of the randomization inference: one that per-
mutes the adjusted responses R−β0D and the other which permutes their ranks. In all figures,
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Fig. 1. (a) Quarter-of-birth data without covariates, (b) quarter-of-birth data with state and year-of-birth
interactions as covariates, (c) random quarter-of-birth data without covariates and (d) random quarter-of-birth
data with state and year-of-birth interactions as covariates: , randomization test using ranks; — —,
randomization test using the observed data; . . . . . . ., TSLS



122 G. W. Imbens and P. R. Rosenbaum

TSLS is the dotted curve, the randomization test using the observed data is the broken curve and
the randomization test using the ranks is the full curve.

The simulation considers four different situations, listed below. In all four, the instruments
are normally distributed with zero mean and unit variance. In each case we draw 40 observa-
tions per sample and carry out 100000 replications of the sampling process. The first three cases
differ in the error distributions which can be normal or thick tailed. In addition we consider
one data-generating process where the instrument is very weak and the correlation between the
errors is high, as in the data-generating processes in Nelson and Startz (1990).

(a) Strong instrument, thin tails, β = 1 and γ = 1: here, .rC, v/ are bivariate normal, specifi-
cally, rC =ρν +√

.1−ρ2/ω where ν is standard normal and ω is an independent standard
normal distribution, and ρ=0:5.

(b) Strong instrument and thick tails for the response: the modification from the first case is the
distribution of rC =ρν +√

.1−ρ2/ω where ν is standard normal and ω has a t-distribution
with 2 degrees of freedom, and ρ=0:5.

(c) Strong instrument and thick tails for the dose: in the third case the distribution of ν =
ρrC + √

.1 − ρ2/ω where rC is standard normal and again ω has a t-distribution with
2 degrees of freedom, and ρ=0:5.

(d) Weak instrument and thin tails: in the fourth case .rC, v/ are bivariate normal with corre-
lation 0.95, so the instrument contributes only slightly to the correlation of dose and
responses. The coefficient γ is changed to 0.229 so that R2 in the first stage is only
0.05.

Fig. 2 presents the power functions for the four data-generating processes for the three tests.
Here, we are testing H0 :β =β0 for various values of β0 when in fact β =1. The power curve at
β0 =1 gives the level of the test, so we hope to see empirically 0.05 for our theoretically 0.05-level
test. In Fig. 2(a), with a strong instrument and thin tails, all three tests have approximately the
right size (in fact, the size for the TSLS test is slightly high at 0.055, whereas for the other tests
the estimated size is 0.049, which cannot be distinguished from 0.05 given that it is based on
100000 replications), and the standard TSLS-based test is somewhat more powerful under the
alternative, as it should be. If the error in the first equation is thick tailed (Fig. 2(b)), then the
randomization-based test using the ranks is much more powerful, with more than three times
the power of TSLS when testing hypothesis H0 : β = 2. With the error in the second equation
thick tailed the standard test is again slightly more powerful. The rank-based test is superior to
the randomization test based on levels. With a weak instrument (Fig. 2(d)), the standard test
has the wrong size, rejecting true hypotheses approximately 15% of the time, as is well known
(e.g. Nelson and Startz (1990) and Maddala and Jeong (1992)). The randomization-based tests
continue to have the right size in this case.

6. All distribution-free instrumental variable tests are permutation tests

A test of hypothesis H0 : β =β0 in Section 4 can be distribution free only if it is a permutation
test. The logic closely parallels that in Lehmann (1959), section 5.7, for an additive effect, so it
will be only sketched here.

Lehmann began by assuming that the rCsi are independent and identically distributed within
each stratum s, so their joint density is

g.rC/=
S∏

s=1

ns∏
i=1

fs.rCsi/, .4/
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Fig. 2. (a) Power function design (a), (b) power function design (b), (c) power function design (c) and
(d) power function design (d): , randomization test using ranks; — —, randomization test using the
observed data; . . . . . . ., TSLS
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where fs.·/ is unknown for s = 1, . . . , S. The instrumental variable model adds to this the fol-
lowing assumptions:

(a) the binary quarter-of-birth indicators Zsi are independent of rCsi,
(b) person i in stratum s would receive dsiz years of education beyond the minimum if the

quarters of birth were z, so this person actually receives Dsi = dsiZ years beyond the
minimum, and

(c) actual log-earnings are determined by the structural equation Rsi = rCsi +βDsi.

From this, it follows that the conditional distribution of Rsi −β0Dsi given Z is equation (4) if
H0 :β =β0 is true. Now Lehmann showed that a test of the hypothesis that Rsi −β0Dsi given Z
has distribution (4) will have level α for all fs.·/, s = 1, . . . , S, if and only if the test rejects the
hypothesis for α|Ω| permutations p∈Ω of R−β0D, i.e. if it divides the orbit {p.R−β0D/ :p∈Ω}
into a rejection region Ω1 containing α|Ω| permutations and an acceptance region Ω0 contain-
ing .1 − α/|Ω| permutations. In our simplified description, we have assumed that α|Ω| is an
integer, but Lehmann showed that this is not needed.

7. Conclusion

A common practice with an instrumental variable is to assume that the instrument is informative
and that the problem is identified, and to apply asymptotic theory to justify an approximately
normal distribution for the estimate β̂, from methods such as TSLS. This turns out badly when
the identification is weak or in doubt, because the resulting methods can perform very poorly,
yet the associated confidence intervals wrongly suggest that they have performed well. In con-
trast, the permutation approach performs well in all the cases that we considered. In favourable
situations, with adequate identification and short-tailed responses, the permutation approach
is not very different from TSLS. With adequate identification and long-tailed responses, the
permutation method yields correct coverage with shorter confidence intervals than does TSLS.
With inadequate identification, the permutation method maintains correct coverage, yielding
long intervals, correctly reflecting the limited information in the data, whereas TSLS gives mis-
leadingly narrow confidence intervals with coverage rates that are too low.

Rather than assume that the parameter is identified, it is better to let the data speak to the
issue of identification. With permutation methods, if identification is weak or non-existent, the
confidence interval accurately reflects this by becoming appropriately longer.
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