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Statistics and Causal Inference 
PAUL W. HOLLAND* 

Problems involving causal inference have dogged at the heels of statistics 
since its earliest days. Correlation does not imply causation, and yet causal 
conclusions drawn from a carefully designed experiment are often valid. 
What can a statistical model say about causation? This question is ad- 
dressed by using a particular model for causal inference (Holland and 
Rubin 1983; Rubin 1974) to critique the discussions of other writers on 
causation and causal inference. These include selected philosophers, med- 
ical researchers, statisticians, econometricians, and proponents of causal 
modeling. 
KEY WORDS: Causal model; Philosophy; Association; Experiments; 
Mill's methods; Causal effect; Koch's postulates; Hill's nine factors; Gran- 
ger causality; Path diagrams; Probabilistic causality. 

1. INTRODUCTION 
The reaction of many statisticians when confronted with 

the possibility that their profession might contribute to a 
discussion of causation is immediately to deny that there 
is any such possibility. "That correlation is not causation 
is perhaps the first thing that must be said" (Barnard 1982, 
p. 387). Possibly this evasive action is in response to all of 
those needling little headlines that pop up in the most 
unexpected places, for example, "If the statistics cannot 
relate cause and effect, they can certainly add to the rhet- 
oric" (Smith 1980, p. 998). 

One need only recall that a well-designed randomized 
experiment can be a powerful aid in investigating causal 
relations to question the need for such a defensive posture 
by statisticians. Randomized experiments have trans- 
formed many branches of science, and the early proponents 
of such studies were the sanle statisticians who founded 
the modern era of our field. 

This article takes the view that statistics has a great deal 
to say about certain problems of causal inference and ought 
to play a more significant role in philosophical analyses of 
causation than it has heretofore. In addition, I will try to 
show why the statistical models used to draw causal infer- 
ences are distinctly different from those used to draw as- 
sociational inferences. 

The article is organized as follows. First, statistical models 
appropriate for associational and causal inferences will be 
discussed and compared. Then they will be applied to vari- 
ous ideas about causation that have been expressed by 
several writers on this subject. One difficulty that arises in 
talking about causation is the variety of questions that are 
subsumed under the heading. Some authors focus on the 
ultimate meaningfulness of the notion of causation. Others 
are concerned with deducing the causes of a given effect. 
Still others are interested in understanding the details of 
causal mechanisms. The emphasis here will be on measur- 
ing the effects of causes because this seems to be a place 
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where statistics, which is concerned with measurement, has 
contributions to make. It is my opinion that an emphasis 
on the effects of causes rather than on the causes of effects 
is, in itself, an important consequence of bringing statistical 
reasoning to bear on the analysis of causation and directly 
opposes more traditional analyses of causation. 

2. MODEL FOR ASSOCIATIONAL INFERENCE 
The model appropriate for associational inference is sim- 

ply the standard statistical model that relates two vari- 
ables over a population. For clarity and for comparison 
with the model for causal inference described in the next 
section, however, I will briefly review association here. If 
I seem overly explicit in describing the model it is only 
because I wish to be absolutely clear on the fundamental 
elements of the theory presented here. 

The model begins with a population or universe U of 
"units." A unit in U will be denoted by u. Units are the 
basic objects of study in an investigation. Examples of units 
are human subjects, laboratory equipment, households, 
and plots of land. A variable is simply a real-valued func- 
tion that is defined on every unit in U. The value of a 
variable for a given unit u is the number assigned by some 
measurement process to u. A population of units and vari- 
ables defined on these units are the basic elements of the 
models for both association and causation presented here. 
They correspond to the mathematical concepts of a set and 
real-valued functions defined on the elements of the set. 
They are the primitives of the theory and will not be further 
defined. 

Suppose that for each unit u in U there is associated a 
value Y(u)  of a variable Y.  Suppose further that Y is a 
variable of scientific interest in the sense that one wishes 
to understand why the values of Y vary over the units in 
U. Y is the response variable because of its status as a 
"variable to be explained." In making associational infer- 
ences one is satisfied with discovering how the values of 
Y are associated with the values of other variables defined 
on the units of U. Let A be a second variable defined on 
U. Distinguish A from Y by calling A an attribute of the 
units in u. Logically, however, A and Y are on an equal 
footing, since they are both simply variables defined on U. 

All probabilities, distributions, and expected values in- 
volving variables are computed over U. A probability will 
mean nothing more nor less than a proportion of units in 
U. The expected value of a variable is merely its average 
value over all of U. Conditional expected values are av- 
erages over subsets of units where the subsets are defined 
by conditioning in the values of variables. It is in this sense 
that the models described here are population models. 

The role of time needs to be mentioned here. Popula- 
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tions of units exist within a time frame of some sort, and 
the measurements of characteristics of units that variables 
represent must also be made at particular times. For as- 
sociational inference, however, the role of time is simply 
to affect the definition of the population of units or to 
specify the operational meaning of a particular variable. 
As we will see, in causal inference the role of time has a 
greater significance. 

The most detailed information one can have in the model 
just described is the values of Y(u) and A(u) are all u in 
U. The joint distribution of Y and A over U is specified by 
Pr(Y = y, A = a) = proportion of u in U for which Y(u) 
= y and A (u) = a. 

The associational parameters are determined by this 
joint distribution. For example, the conditional distribu- 
tion of Y given A is specified by Pr(Y = y 1 A = a) = 
Pr(Y = y, A = a)/Pr(A = a). This conditional distribu- 
tion describes how the distribution of Y values changes 
over U as A varies. A typical associational parameter is the 
regression of Y on A, that is, the conditional expectation 
( Y  1 A = a). 

Associational inference consists of making statistical in- 
ferences (estimates, tests, posterior distributions, etc.) about 
the associational parameters relating Y and A on the basis 
of data gathered about Y and A from units in U. In this 
sense, associational inference is simply descriptive s'tatis- 
tics. 

3. RUBIN'S MODEL FOR CAUSAL INFERENCE 
Because experimentation is such a powerful scientific 

and statistical tool and one that often introduces clarity 
into discussions of specific cases of causation, I una- 
bashedly draw on the language and framework of experi- 
ments for the model for causal inference. It is not that I 
believe an experiment is the only proper setting for dis- 
cussing causality, but I do feel that an experiment is the 
simplest such setting. The purpose is to construct a model 
that is complex enough to allow us to formalize basic in- 
tuitions concerning cause and effect. The point of depar- 
ture is the analysis of causal effects given in Rubin (1974, 
1977, 1978, 1980). It will be sufficient for our purposes, 
however, to deal with a simplified, population-level version 
of Rubin's model. This simplified model was used in Hol- 
land and Rubin (1980) to analyze causal inference in retro- 
spective, case-control studies used in medical research and 
in Holland and Rubin (1983) to analyze Lord's "analysis 
of covariance" paradox. I refer to this as "Rubin's model" 
even though Rubin would argue that the ideas behind the 
model have been around since Fisher. I think that Rubin 
(1974) was the place where these ideas were first applied 
to the study of causation. 

This model also begins with a population of units, U. 
Units in the model for causal inference are the objects of 
study on which causes or treatments may act. The terms 
cause and treatment will be used interchangeably, and the 
notion that these terms convey is an important part of the 
model. It is important to realize that by using the terms 
cause and treatment interchangeably I do not intend to 
limit the discussion to the activities within a controlled 

randomized study. I do it to emphasize an idea that I be- 
lieve receives insufficient attention in general discussions 
of causation. This is the fact that the effect of a cause is 
always relative to another cause. For example, the phrase 
"A causes B" almost always means that A causes B relative 
to some other cause that includes the condition "not 
A." The terminology becomes rather tortured if we try to 
stick with the usual causal language, but it is straightfor- 
ward if we use the language of experiments-treatment 
(i.e., one cause) versus control (i.e., another cause). In Sec- 
tion 7 1 will discuss the fundamental question of what kinds 
of things can be causes. The key notion, however, is the 
potential (regardless of whether it can be achieved in prac- 
tice or not) for exposing or not exposing each unit to the 
action of a cause. For causal inference, it is critical that each 
unit be potentially exposable to any one of the causes. 
As an example, the schooling a student receives can be a 
cause, in our sense, of the student's performance on a test, 
whereas the student's race or gender cannot. 

For simplicity it shall be assumed in this article that there 
are just two causes or levels of treatment, denoted by t 
(the treatment) and c (the control). Let S be a variable 
that indicates the cause to which each unit in U is exposed; 
that is, S = t indicates that the unit is exposed to t and S 
= c indicates exposure to c. In a controlled study, S is 
constructed by the experimenter. In an uncontrolled study, 
S is determined to some extent by factors beyond the ex- 
perimenter's control. In either case, the critical feature of 
the notion of cause in this model is that the value of S(u) 
for each unit could have been different. 

The variable S is analogous to the variable A in Section 
2, but with the essential difference that S(u) indicates ex- 
posure of u to a specific cause, whereas A(u) can indicate 
a property or characteristic of u. In this case the value of 
A(u) could not have been different. 

The role of time now becomes important because of the 
fact that when a unit is exposed to a cause this must occur 
at some specific time or within a specific time period. Vari- 
ables now divide into two classes: pre-exposure-those 
whose values are determined prior tb exposure to the cause; 
post-exposure-those whose values are determined after 
exposure to the cause. 

The role of a response variable Y is to measure the effect 
of the cause, and thus response variables must fall into the 
post-exposure class. This gives rise to another critical ele- 
ment of the model. The values of post-exposure variables 
are potentially affected by the particular cause, t or c, to 
which the unit is exposed. This is nothing less than the 
statement that causes have effects, which is the very heart 
of the notion of causation. For the model to represent 
faithfully this state of affairs we need not a single variable, 
Y, to represent a response but two variables, Y, and Yc, 
to represent two potential responses. The interpretation 
of these two values, Y,(u) and Yc(u) for a given unit u, is 
that Yt(u) is the value of the response that would be ob- 
served if the unit were exposed to t and Yc(u) is the value 
that would be observed on the same unit if it were exposed 
to c. 

The notation Yt(u) and Yc(u) is sometimes confusing 
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because a variable usually represents a measurement of 
some sort and a measurement is usually thought of as the 
result of a process that is applied to a unit. This is not really 
correct. For post-exposure variables the measurement is 
applied to the pairing (u, t) (i.e., u after exposure to t) or 
to (u, c) (i.e., u after exposure to c). A notation that more 
nearly expresses this joint dependence of Y on u and the 
exposed cause is Y,(u) = Y(u, ()and Yc(u) = Y(u, c). I 
shall use the Y,, Y, notation, however, since it leads to 
simpler expressions. 

The effect of the cause t on u as measured by Y and 
relative to cause c is the difference between Y,(u) and 
Yc(u). In the model this will be represented by the algebraic 
difference 

Y.(u) - Yc(u). (1) 
I shall call the difference (1) the causal effect of t (relative 
to c) on u (as measured by Y). Expression (1) is the way 
that the model for causal inference expresses the most basic 
of all causal statements. It says that treatment t causes the 
effect Y,(u) - Yc(u) on unit U (relative to treatment c) 
or more simply that 

t causes the effect Y,(u) - Yc(u). (2) 
Causal inference is ultimately concerned with the effects 

of causes on specific units, that is, with ascertaining the 
value of the causal effect in (1). It is frustrated by an 
inherent fact of observational life that I call the Funda- 
mental Problem of Causal Inference. 

Fundamental Problem of Causal Inference. It is im- 
possible to observe the value of Y,(u) and Yc(u) on the 
same unit and, therefore, it is impossible to observe the 
effect of t on u. 

The emphasis is on the word observe. The impossibility 
of observing both Y,(u) and Yc(u) is self-evident in some 
examples and less clear in others. For example, if the unit 
u is a specific fourth grader, t represents a novel year-long 
program of study of arithmetic, c represents a standard 
arithmetic program, and Y is a score on a test at the end 
of the year, then it is evident that we could observe either 
Y/u) or Yc(u) but not both. We will never observe what 
the effect of t was on u. On the other hand, if u is a room 
in a house, t means that I flick on the light switch in that 
room, c means that I do not, and Y indicates whether the 
light is on or not a short time after applying either t or c, 
then I might be inclined to believe that I can know the 
values of both Yi(u) and Yc(u) by simply flicking the switch. 
It is clear, however, that it is only because of the plausibility 
of certain assumptions about the situation that this belief 
of mine can be shared by anyone else. If, for example, the 
light has been flicking off and on for no apparent reason 
while I am contemplating beginning this experiment, I might 
doubt that I would know the values of Y,(u) and Yc(u) 
after flicking on the switch-at least until I was clever 
enough to figure out a new experiment! 

The implicit threat of the Fundamental Problem of Causal 
Inference is that causal inference is impossible. But we 
should not jump to that conclusion too quickly. By assert- 

ing that the simultaneous observation of Y,(u) and Yc(u) 
is impossible I do not mean that knowledge relevant to 
these values is completely absent. It will depend on the 
situation considered. There are two general solutions to 
the Fundamental Problem, which for the sake of conven- 
ience I will label the scientific solution and the statistical 
solution. 

The scientific solution is to exploit various homogeneity 
or invariance assumptions. For example, by studying the 
behavior of a piece of laboratory equipment carefully a 
scientist may come to believe that the value of Yc(u) mea- 
sured at an earlier time is equal to the value of Yc(u) for 
the current experiment. All he needs to do now is to expose 
u to t and measure Y,(u) and he has overcome the Fun- 
damental Problem of Causal Inference. Note, however, 
that this hypothetical scientist has made an untestable hom- 
ogeneity assumption. By careful work he may convince 
himself and others that this assumption is right, but he can 
never be absolutely certain. Science has progressed very 
far by using this approach. The scientific solution is a com- 
monplace aspect of our everyday life as well. We all use 
it to make the causal inferences that arise in our lives. 
These ideas are amplified in Sections 4.1 and 4.2. 

The statistical solution is different and makes use of the 
population U in a typically statistical way. The average 
causal effect, T, of t (relative to c) over U is the expected 
value of the difference Y,(u) - Yc(u) over the U'S in U; 
that is, 

T defined in (3) is the average causal effect. By the usual 
rules of probability (3) may also be expressed as 

Although this does not look like much, (4) reveals that 
information on different units that can be observed can be 
used to gain knowledge about T. For example, if some 
units are exposed to t they may be used to give information 
about E(Y,) (because this is the mean value of Y, over U), 
and if other units are exposed t~ c they may be used to 
give information about E(Yc). Formula (4) is then used to 
gain knowledge about T. The exact way that units would 
be selected for exposure to t or c is very important and 
involves all of the usual considerations of good statistical 
design of experiments. The important point is that the 
statistical solution replaces the impossible-to-observe causal 
effect of t on a specific unit with the possible-to-estimate 
average causal effect of t over a population of units. These 
ideas will be developed further in Sections 4.3 and 4.4. 

The usefulness of either the scientific or the statistical 
solution to the Fundamental Problem of Causal Inference 
depends on the truth of different sets of untestable as- 
sumptions. In Section 4 I will discuss some of the typical 
assumptions that are often used to overcome the Funda- 
mental Problem of Causal Inference. 

It is useful to have a notation to express the fact that 
the causal indicator variable S determines which value, Y, 
or Y,, is observed for a given unit. If S(u) = t, then Y,(u) 
is observed, and if S(u) = c, then Yc(u) is observed. Thus 
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the observed response on unit u is Ys(u/u). The observed 4.2 Unit Homoaeneity 
response ~ a r i a b l ~ i s ,  therefore, Ys. ~ e n c e ,  even though the 
model contains three variables, S, Y,, and Yc, the process 
of observation involves only two, that is, S, Ys. The dis- 
tinction between (a) the measurement process, Y, that pro- 
duces the response variable; (b) the two versions of the 
response variable Yt and Yc that corresponds to which cause 
the unit is exposed (and in terms of which causal effects 
are defined); and (c) the observed response variable Ys, is 
very important and, often, is not made in discussions of 
causation. These distinctions never arise in the study of 
simple association, but they are crucial to the analysis of 
causation. 

It is useful to review the model for associational infer- 
ence and Rubin's model side by side to emphasize their 
differences. Both involve a population of units, U, and 
both involve two observable variables: (A, Y) for associ- 
ation and (S, Ys) for causation. This is all, however, that 
they have in common. Whereas A and Y are simply vari- 
ables defined on the units of U, S and Ys presuppose a 
more complicated structure in order for them to apply to 
real situations. Two or more causes (or treatments) must 
be exposable to all of the units, and the response Y must 
be a post-exposure variable in order for the observed re- 
sponse Ys to be defined. Associational inference involves 
the joint or conditional distributions of values of Y and A, 
and causal inference concerns the values Y,(u) - Yc(u) on 
individual units. Causal inferences proceed from the ob- 
served values of S and Ys and from assumptions that ad- 
dress the Fundamental Problem of Causal Inference but 
that are usually untestable. Causal inferences do not nec- 
essarily involve statistical inferences, but associational in- 
ferences almost always do. 

4. SOME SPECIAL CASES OF CAUSAL INFERENCE 
This section considers some simple special cases of Rub- 

in's model for causal inference. The purpose is to show 
how specific assumptions added to the model allow causal 
inferences of particular types. 

4.1 Temporal Stability and Causal Transience 
One way of applying the scientific solution to the Fun- 

damental Problem of Causal Inference is to assume that 
(a) the value of Yc(u) does not depend on when the se- 
quence "apply c to u then measure Yon u" occurs and (b) 
the value of Yt(u) is not affected by the prior exposure of 
u to the sequence in (a). When these two assumptions are 
plausible it is a simple matter to measure Y,(u) and Yc(u) 
by sequential exposure of u to c then t, measuring Y after 
each exposure. The first assumption is temporal stability, 
because it asserts the constancy of response over time. The 
second assumption is causal transience, because it asserts 
that the effect of the cause c and the measurement process 
that results in Yc(u) is transient and does not change u 
enough to affect Yt(u) measured later. These two assump- 
tions often apply to physical devices and are routinely made 
by all of us in everyday life-for example, in the "light 
switch" example mentioned earlier. 

A second way of applying the scientific solution to the 
Fundamental Problem is to assume that Yt(ul) = Yt(u2) 
and Yc(ul) = Yc(u2) for two units ul and uz. This is the 
assumption of unit homogeneity. It, too, is often applicable 
to work done in scientific laboratories and is also a causal 
workhorse of everyday life. The causal effect of t is taken 
to be the value of Yl(ul) - Yc(u2). One way that laboratory 
scientists convince themselves that the units are homoge- 
neous is to prepare them carefully so that they "look" 
identical in all relevant aspects. This, of course, cannot 
prove that the unit homogeneity assumption is valid, but 
it can make this assumption plausible. 

4.3 Independence 
In my discussion of the statistical solution to the Fun- 

damental Problem, I did not give any specification to the 
way that units might be selected for observation of Yt or 
Ye. I only indicated that it was very important. Of course, 
the most well-known way that this occurs in experimental 
work is by randomization, and this section is concerned 
with that topic. 

The supposition in using the statistical solution is that 
the population U does not consist of one or two units but 
is "large" in some sense. The observed data for each unit 
are values of the pair of variables (5, Ys). 

The average causal effect T is the difference between 
the two expected values E(Y,) and E(Yc). The observed 
data (5, Ys), however, can only give us information about 

and 
Y s  1 S = c) = E(Yc 1 S = c). (6)  

It is important to recognize that E(Yt) and E(Yt \ S = t )  
are not the same thing and need not have the same values 
in general [similarly for E(Yc) and E(Yc \ S = c)]. To state 
this difference in words, E(Yt) is the average value of Yt(u) 
over all u in U, where E(Y, 1 S =* t) is the average value 
of Y,(u) over only those in u in U that were exposed to t. 
There is no reason why, in general, these two averages 
should be equal. For example, if S(u) = t for all units for 
which Yt(u) is small, then E(Y, 1 S = t) will be smaller 
than E(Y,). 

There is, however, an assumption that, if plausible, makes 
these two expected values equal. It is the assumption of 
independence. When units are assigned at random either 
to cause t or tocause c, certain physical randomization 
processes are carried out so that the determination of which 
cause (t or c) u is exposed to is regarded as statistically 
independent of all other variables, including Y, and Yc. 
This means that if the physical randomization is carried 
out correctly, then it is plausible that S is independent of 
Y, and Yc and all other variables over U. This is the in- 
dependence assumption. If this assumption holds, then we 
have the basic equations 
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and 

E(Yc) = E(Yc 1 S = c). (8) 
Hence under the independence assumption the average 
causal effect T satisfies the equation 

The data (S, Ys) can now be used to estimate T by taking 
the difference between the average value of the observed 
response Ys for the units with S = t and for the units with 
S = c. Hence, if randomization is possible, the average 
causal effect T can always be estimated. If U is large, T 
can be estimated with high accuracy. 

It is useful to have a name for the right side of Equation 
(9) even when the assumption of independence does not 
hold. I will call it the prima facie causal effect of t (relative 
to c) and denote it by 

which is algebraically equal to the following function of the 
regression of Ys on S: 

The term prima facie causal effect is adapted from Suppes 
(see Sec. 5) and used here to distinguish (11) from the true 
average causal effect, T, defined in Equation (3). The prima 
facie causal effect is an associational parameter for the joint 
distribution of the observable pair (Ys, S). In general, the 
average causal effect T does not equal the prima facie 
causal effect TpF. The assumption of independence, how- 
ever, does allow the conclusion that T = TpF, that is, 
Equation (9). 

4.4 Constant Effect 
The value of the average causal effect T is of potential 

interest for its own sake in certain types of studies. It would 
be of interest to a state education director who wanted to 
know what reading program would be the best to give to 
all of the first graders in his state. The average causal effect 
of the best program would be reflected in increases in 
statewide average reading scores. 

The average causal effect T is an average and as such 
enjoys all of the advantages and disadvantages of averages. 
For example, if the variability in the causal effects 
Yt(u) - Yc(u) is large over U, then T may not represent 
the causal effect of a specific unit, u,,, very well. If uO is the 
unit of interest, then T may be irrelevant, no matter how 
carefully we estimate it! 

The assumption of constant effect is that the effect of t 
on every unit is the same, and under this assumption we 
have the equation 

T = Yt(u) - Yc(u), for all u in U. (12) 
Hence under the assumption of constant effect T is the 
causal effect for every unit in U. This assumption is also 
called additivity in statistical models for experiments be- 
cause the treatment t adds a constant amount T to the 
control response for each unit. 

The assumption of constant effect makes the value of 
the average causal effect relevant to every unit and, there- 
fore, allows T to be used to draw causal inferences at the 
unit level. 

The assumption of constant effect can be partially checked 
in the same way that the additivity assumption is usually 
investigated. For example, U can be divided into subpop- 
ulations Ul, U2, . . . , and on each Ui the average causal 
effect can be estimated, Ti, T-), . . . . If the T,'s vary, the 
constant effect assumption cannot hold. If the Ti's do not 
vary, then the constant effect assumption may be plausible. 

The constant effect assumption is implied by the unit 
homogeneity assumption; that is, if Yt(ul) = Yt(u2) and 
Yc(ul) = Yc(u2), then clearly Yt(ui) - Yc(ul) = Yt(u2) - 
Yc(u2). Hence we may view the constant effect assumption 
as a weakening of the assumption of unit homogeneity. 

If we make only the constant effect assumption we may 
not conclude that the prima facie causal effect, TpF, in (10) 
equals the average causal effect, T, in (3). To see this 
observe that under constant effect we have 

for all units, u. Hence 

( Y  1 S = t) = T + E(Yc 

so 
TpF = T + {E(Yc I S = t) - E( 

The term in braces in (15) is not 0 in 

S = t), (14) 

'c I s = c)}. (15) 
general, that is, if 

the independence assumption is not true. 
It is easy to show that the stronger assumption of unit 

homogeneity does imply equality between T and TpF. 

4.5 Causal Inference in Nonrandomized 
Observational Studies 

It is beyond the scope of this article to apply the model 
for causal inference to nonrandomized studies. This has 
been done extensively, and the reader is referred to Rubin 
(1974, 1977, 1978), Rosenbaum (l984a,b,c), Rosenbaum 
and Rubin (1983a,b, 1984a,b, 198$a,b), and Holland and 
Rubin (1980,1983). An important emphasis in these papers 
is on the ways that pre-exposure variables can be used to 
replace the independence assumption with less stringent 
conditional independence assumptions that are useful in 
observational studies. Rosenbaum and Rubin referred to 
one such assumption as "strong ignorability." 

5. COMMENTS ON SELECTED PHILOSOPHERS 
So much has been written about causality by philoso- 

phers that it is impossible to give an adequate coverage of 
the ideas that they have expressed in a short article. This 
section views some of these ideas in the context of Rubin's 
model for causal inference given in Sections 3 and 4. It 
makes no attempt to be exhaustive or even representative. 

Aristotle distinguished four "causes" of a thing in his 
Physics: The material cause (that out of which the thing is 
made), the formal cause (that into which the thing is made), 
the efficient cause (that which makes the thing), and the 
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finalcause (that for which the thing is made). It is his notion 
of efficient cause that is relevant to our discussion and to 
most discussions of causation that grow out of inquiries 
into the methods of science. Locke (1690) proposed these 
definitions: "That which produces any simple or complex 
idea, we denote by the general name 'cause', and that which 
is produced, 'effect'." Although it is evident that these 
definitions refer to the same kinds of things that concern 
the model in Section 3, they do little more than suggest 
that the model is not out of line with an ancient philo- 
sophical tradition. It should be noted, however, that 
Aristotle emphasized the causes of a thing rather than the 
effects of causes. Locke seems a little more even-handed. 
Bunge (1959) gave a very accessible discussion of the his- 
tory of many ideas about the essential meaning of causa- 
tion. 

5.1 Hume 
When we turn to the analysis of causation given by Hume 

(1740, 1748) we find a critical basis for examining Rubin's 
model. Hume's analysis of causality is generally regarded 
to be an important contribution to the literature of this 
subject. Hume emphasized that causation is a relation be- 
tween experiences rather than one between facts. He ar- 
gued that it is not empirically verifiable that the cause 
produces the effect, but only that the experienced event 
called the cause is invariably followed by the experienced 
event called the effect. Hume's empirical stance can be 
regarded as sympathetic with the classical statistical view 
that the role of statistics is to draw inferences about unob- 
served quantities on the basis of observed facts. He was 
also very clear about the role of untestable assumptions in 
drawing causal conclusions. 

Hume's analysis recognized three basic criteria for cau- 
sation: (a) spatialltemporal contiguity, (b) temporal 
succession, and (c) constant conjunction. In the analysis 
of the idea that A causes B this means that (a) A and B 
are contiguous in space and time, (b) A precedes B in time, 
and (c) A and B always occur (or do not occur) together. 

In terms of Rubin's model the first two of Hume's criteria 
are easily accommodated. The criterion of spatialltem- 
poral contiguity is expressed in the model by the action of 
the cause and the measurement of the effect all taking place 
on a common entity, the unit. Since real entities must exist 
in space and time the contiguity criterion is satisfied and 
possibly clarified by the model. Temporal contiguity is rel- 
evant to the degree that the time period involved affects 
the unit. Spatial contiguity is often defined by the unit itself 
and may not involve simple "nearness." 

The issue of temporal succession is shamelessly em- 
braced by the model as one of the defining characteristics 
of a response variable. The idea that an effect mightprecede 
a cause in time is regarded as meaningless in the model, 
and apparently also by Hume. 

Hume's notion of constant conjunction is more difficult 
simply because it might not hold for many reasons. In terms 
of the model there are two types of reasons why it might 
not hold. One of these involves "measurement error," and 
the other is more fundamental and involves the structure 

of the model. Measurement error often creates violations 
of constant conjunction in real scientific investigations. We 
may think we have a case of "A and not B" but we really 
have a case of "A' and not B" for some A' that we mistook 
for A (similarly for examples of "not A and B"), In the 
model these "errors of measurement" can involve both the 
causes and the response variable that determines the effect. 
The other, more fundamental way that constant conjunc- 
tion can fail in the model is for the constant effect as- 
sumption to fail to hold, that is, for the causal effects 
Y,(u) - Yc(u) to vary with the unit u. Hence, if we dis- 
regard those cases of nonconstant conjunction that are due 
to measurement error, we see that Hume's third criterion 
requires the constant effect assumption to hold in our model. 
Hume would probably argue that any weakening of this 
assumption would allow cases that he would not call "cau- 
sation" into the model. We will have to be satisfied that at 
least Hume's analysis fits into the model and let others 
judge the utility of the constant effect assumption. I should 
point out that the distinction between constant and variable 
causal effects (a) is often not easy to prove one way or the 
other in a particular case and (b) has been at the heart of 
at least one important controversy in the history of statistics 
(see Sec. 6). 

What I see that is missing from Hume's analysis is any 
notion that the effect of cause is always relative to another 
cause. The notion that a cause could have been different 
from what it was and that it is this difference that defines 
the effect is completely missing from Hume. In Hume's 
analysis causes are not delineated in any way. Anything 
can be a cause. The importance of this point will be em- 
phasized in Section 7. Finally, Hume does not identify the 
idea of an experiment as related to or important for cau- 
sation. 

5.2 Mill 
John Stuart Mill is rather different in this regard. Mill 

(1843) was positively disposed toward experiments. 
Observation, in short, without experimentation (supposing no aid from 
deduction) can ascertain sequences and co-existences, but cannot prove 
causation. (p. 253) 
. . . we have not yet proved that antecedent to be the cause until we have 
reversed the process and produced the effect by means of that antecedent 
artificially, and if, when we do so, the effect follows, the induction is 
complete. . . . (p. 252) 

Mill is credited with codifying and elaborating on several 
methods of experimental inquiry that had been put forth 
by Sir Francis Bacon 250 years earlier. Mill identified four 
general methods, which I now discuss. 

The Method of Concomitant Variation. This method 
flies in the face of the distinctions that I have drawn be- 
tween association and causation. 
Whatever phenomenon varies in any manner, whenever another phe- 
nomenon varies in some particular manner, is either a cause or an effect 
of that phenomenon, or is connected with it through some fact of caus- 
ation. (p. 464) 

I think that as a method of science the widespread use 
of this method is indisputable. Most scientists would agree 
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that where there is correlational smoke there is likely to 
be causational fire. Most would not, however, go as far as 
Mill's statement of the method. 

Of course, even if Rubin's model does apply, the cor- 
relation between the observed variables S and Ys does not 
say much about the causal effects or even the average causal 
effect, because the correlation of Ys and S is simply another 
way of expressing the prima facie causal effect, Tpp. 

More generally, not everything can be a "cause" in the 
sense used in the model, but Mill's method of concomitant 
variation can be applied to cases for which only association 
is appropriate. That this can result in nonsense discussions 
of causation is well known. 

Method of Difference. This method is almost an exact 
statement of what we mean by a causal effect, even though 
it is couched in a more general language and its proposed 
use is to identify causes and effects. 
If an instance in which the phenomenon under investigation occurs, and 
an instance in which it does not occur, have every circumstance in common 
save one, that one occurring in the former; the circumstances in which 
alone the two instances differ, is the effect, or the cause, or an indispen- 
sable part of the cause of the phenomenon. (p. 452) 

If we restrict our attention to the following interpretation 
of the elements of this quotation we see a fairly straight- 
forward definition of causal effect: "phenomenon under 
investigation" occurs-Y = 1; "phenomenon under in- 
vestigation" does not occur-Y = 0; "the circumstance in 
which the instances differ"-when present = t, when ab- 
sent = c. Then Y,(u) = 1 denotes the fact that when the 
circumstance was present the phenomenon occurs, and 
Yc(u) = 0 denotes the fact that when the circumstance was 
absent the phenomenon did not occur. The equality of all 
other circumstances is modeled by considering the same 
unit. Thus Yi(u) - Yc(u) = 1, so the causal effect of the 
circumstance on the unit is 1 and corresponds to Mill's 
statement that the circumstance is "the cause or an indis- 
pensable part of the cause of the phenomenon." 

Mill also considered reversing the process to look for 
causes of given effects. This is a well-known scientific tech- 
nique-for example, it occurs often in epidemiological 
studies of public health problems. It is beyond the scope 
of this article to apply the model to such a case, but some 
work along this line can be found in Hamilton (1979) and 
Holland and Rubin (1980). 

The Method of Residues. This method also applies fairly 
simply to the model. Its statement is 
Subduct from any phenomenon such part as is known by previous induc- 
tions to be the effect of certain antecedents, and the residue of the phe- 
nomenon is the effect of the remaining antecedents. (p. 460) 

To place this into the context of the model let the an- 
tecedents (i.e., causes) be denoted by a = those whose 
effect is known and b = the remaining antecedents. 

The causal effect of ab relative to a is simply Yab(u) - 
Ya(u), which is the residue Mill tells us to compute. I regard 
Mill's method of residues to be a nearly explicit, early 
statement of the definition of causal effect. 

The Method of Agreement. Usually this method is dis- 

cussed first because it is so clearly a part of scientific in- 
vestigations. I have left it to the end because it requires 
the introduction of the notion of a "null effect." The method 
is stated as follows: 
If two or more instances of a phenomenon under investigation have only 
one circumstance in common, the circumstance in which alone all the 
instances agree, is the cause (or effect) of the given phenomenon. (p. 
451) 

Although it looks like a method for identifying the cause 
of a phenomenon, it is clear to anyone who has ever used 
the method of agreement that all that the method really 
does is to rule out possible causes. It is this aspect of the 
method of agreement that fits into the model. 

If, as in the discussion of the method of difference, we 
let Y = 1 (or 0) denote the occurrence (or not) of "the 
phenomenon under investigation," and then if the phe- 
nomenon occurs when the cause t occurs and also when 
the cause t does not occur, that is, c, we have 

Y,(u) = 1 and Yc(u) = 1, 

Hence the causal effect of t is 0; that is, t is a cause with a 
null effect. The principle of causality states that every phe- 
nomenon has a cause; that is, every effect has a cause. 
Every practicing experimentalist can attest to the fact that 
the reverse is not true-experiments fail. Causes do not 
necessarily have effects. Null effects are the stuff from 
which null hypotheses are made! 

My conclusion is that Mill's thinking, being driven by an 
experimental model, is in reasonably close agreement with 
the model of Section 3. He is close to the idea that the 
effect of a cause is always relative to another cause, unlike 
Hume. Like Hume, however, he does not restrict the no- 
tion of cause in any way. For Hume and Mill any phenom- 
enon can be a cause. Finally, like Hume, Mill does not 
consider variation (i.e., either unit inhomogeneity or vari- 
able causal effects) in any serious way. 

5.3 Suppes t 

Variation is an explicit consideration in Patrick Suppes's 
(1970) probabilistic theory of causality. Suppes's goal was 
to improve upon Hume's analysis, specifically the constant 
conjunction criterion, because 
. . . in restricting himself to the concept of constant conjunction, Hume 
was not fair to the use of causal notions in ordinary language and expe- 
rience. (p. 10) 

Like Hume, Suppes puts no restriction on what causes 
and effects are save only that they be expressible as events 
that occur in time. Thus Suppes uses the language of sto- 
chastic processes to formalize his theory. He explained the 
intuitive idea of his theory as follows: 
Roughly speaking, the modification of Hume's analysis I propose is to 
say that one event is the cause of another if the appearance of the first 
event is followed with a high probability by the appearance of the second, 
and there is no third event that we can use to factor out the probability 
relationship between the first and second events. (p. 10) 

Suppes expressly adopted the temporal succession cri- 
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terion that all causes precede their effects in time. He first 
defined a prima facie cause of an event as an event that 
temporally precedes it and that is positively associated with 
it. He then defined a spurious cause of an effect (i.e., an 
event) as a prima facie cause of the effect that is, in fact, 
conditionally independent of the effect given a second event 
that is temporally prior to the prima facie cause and that 
is conditionally positively associated with the effect given 
the prima facie cause. This is what he meant by "factoring 
out" a probability relationship. A genuine cause is a prima 
facie cause that is not spurious. 

More precisely Suppes's definitions are as follows: 
(Sl) If r < s denote two time values, the event Cr is a 

prima facie cause of the event Es if 

(S2) Cr is a spurious cause of E, if Cr is a prima facie 
cause of E, and for some q < r < s there is an event Dq 
such that 

I G ,  Dq) = Pr(Es I Dq) (17) 
and 

I Cr, Dq) 2 Pr(Es I Cr). (18) 
(S3) Cr is a genuine cause of E, if Cr is a prima facie cause 

of Es but Cr is not a spurious cause of E,. 
In all of these definitions the probabilities of the events 
used in the conditioning statements are assumed to be pos- 
itive. Suppes also considered other issues, such as direct 
and indirect causes, but (S1)-(S3) are the main elements 
of his theory. 

It is clear that Suppes's analysis is quite different from 
that given in Section 3. He defined the cause of an effect 
rather than the effect of a cause. Like Hume and Mill he 
placed no general restriction on the nature of a cause other 
than that it be expressible as an event that occurs prior in 
time to the effect. There is no explicit place for units in 
Suppes's stochastic process model-they are buried in the 
probability space on which the events he considered are 
defined. Hence Suppes does not have the machinery to 
express the effect of a cause in a particular case. His model 
describes average behavior, not individual behavior. 

At bottom, Suppes's notion of a genuine cause is simply 
a correlation between a cause and effect that will not go 
away by "partialling out" legitimate competing causes. In 
a sense then for Suppes all genuine causes are only tem- 
porarily so as they await the cleverness of the analyst to 
identify the proper conditioning event that will render null 
their association with the effect. Although this may, in- 
deed, describe much informal scientific practice, it does 
not appear to me to get to the heart of the notion of cau- 
sation, which, I believe, Rubin's model does. 

Suppes's theory, however, does capture some useful ideas, 
and because it is stated with precision it is a fairly easy task 
to relate these ideas to Rubin's model. 

In what follows, all probabilities and expectations are 
computed over the population U of units. 

Earlier, his notion of a prima facie cause was translated 

into the prima facie causal effect as follows. The association 
between the observed response Ys and the causal indicator 
S can be measured by the difference in the average value 
of the response between the units exposed to t and those 
exposed to c. We have called this the prima facie causal 
effect o f t  (relative to c), that is, 

We have seen that the association between cause and 
effect that defines a prima facie cause is a causal effect 
under certain conditions that have wide use in science, but 
TpFis not always a causal effect. This is why Suppes defined 
prima facie causes. 

I will finish this section by showing what happens when 
we apply Suppes's notion of a spurious cause to the context 
of a randomized experiment. This will shed some light on 
the relation of his theory to Rubin's model. 

If the response variable Y is a 011 indicator, then we 
may keep the discussion in terms of the event terminology 
that Suppes used. Thus {Ys = I} corresponds to Es and 
{S = t} corresponds to Cr, and I will discuss the meaning 
of the event Dq subsequently. 

Consider Equation (17) from (S2). For a randomized 
experiment it is 

Pr(Ys = 1 1 S = t, D,) = Pr(Ys = 1 1 D,). (20) 
By using the usual rules for handling conditional proba- 
bilities we may express (20) as follows: 
{Pr(Y, = 1 1 S = t, D,) - Pr(Yc = 1 1 S = c, D,)} 

x Pr(S = c 1 D,) = 0. (21) 
Hence the only way that Equation (20) can hold is for 
either 

Pr(S = t 1 D,) = 1 (22) 

p r y t  = 1 1 5 = t, D,) = Pr(Yc = 1 I S = c, D,). (23) 
If Dq is an event that occurs prior in time to the exposure 

of the units to tor c, then I will assume that Dq is determined 
by the values ofpre-exposure variables defined on the units 
in U. Now suppose that the assumption of independence 
holds so that S is statistically independent of Y,, Yc and of 
the pre-exposure variables that define D,. Furthermore, 
suppose that 

so each unit has positive probability of being exposed to 
either cause. The independence assumption and (24) then 
imply that (22) cannot hold and that Equation (17), there- 
fore, reduces to 

Pr(Y, = 1 1 D,) = Pr(Yc = 1 1 D,). (25) 
Because Y is an indicator variable we can rewrite (25) in 
terms of an average causal effect; that is, 

The average causal effect T(Dq) in (26) is the average 
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causal effect over all units in U for which the event Dq 
occurs. Hence we see that Suppes's condition (17) for a 
spurious cause reduces to the condition 

in a randomized experiment. The other condition that Suppes 
required in (S2) is inequality (18), which is, in the present 
context, equivalent to 

Pr(Ys = 1 I S = t, Dq) s Pr(Ys = 1 1 S = t). (28) 
Under randomization this becomes 

If we put (29) and (27) together with the condition that t 
be a prima facie cause we find that the treatment in a 
randomized experiment is a spurious cause of the effect if 
and only if it has a positive average causal effect, but a 
subpopulation of units can be identified on the basis of 
pre-exposure variables (a) on which the average causal 
effect is 0 and (b) for which the response under t is more 
likely to occur than it is for all of U. I think that part (a) 
is more accurately described as a null effect in the sub- 
population and part (b) is unrelated to the notion of cause. 
The existence of a subpopulation on which the effect is 
null while the overall effect is positive is an example of 
nonconstant conjunction in Hurne's sense. It would be called 
an interaction by most statisticians. 

6. COMMENTS FROM A FEW STATISTICIANS 
This section is devoted to a brief examination of the 

writings of a few statisticians to see in what way the idea 
of multiple versions of the response, that is, Yt and Yc, has 
appeared before. I find that many people have difficulty 
with the idea of distinguishing Yt and Yc from Y or Ys and 
perhaps this look at earlier work may help clarify this as- 
sumption. Unfortunately, the exact idea is never stated 
explicitly, so there is a need for a certain amount of de- 
tective work to find it. I hope I will not be held guilty of 
wrongly reinterpreting the work of others. 

A fairly clear statement of this idea was given by 
Kempthorne (1952) in a discussion of the analysis of ran- 
domized block designs. (A randomized block design is a 
typical agricultural experimental plan in which larger tracts 
of land, called blocks, are each subdivided into p plots and 
then one of the experimental treatments is applied at ran- 
dom to each of thep plots within each block.) For example, 
Kempthorne (1952, p. 136) first defined yields as follows: 
"We shall denote the yield with treatment k . . . on plot j 
. . . of block i . . . by yijk." He then wrote: 
In fact we do not observe the yield of treatment k on plot j but merely 
the yield of treatment k on a randomly chosen plot in the block. . . . we 
denote the observed yield of treatment k in block i by y*. (p. 137) 

It seems evident from the two quotations that the yijk in 
the first refers to different versions of the response-one 
for each k-on each combination (i, j) of plot within block. 
The yik in the second quotation is the value of yijk for that 
plot to which treatment k is actually applied in block i. 

It is not difficult to make the following translation of 

Kempthorne's notation. The units are the "plots," so the 
units need two subscripts for identification; that is, uij is 
the jth plot within block i. The yield of treatment k on the 
unit uij is yijk = Yk(ui,), where Yk(u) is the value of the 
response that is observed if u is exposed to treatment k. 
The randomization process picks one of the treatments to 
apply to unit uij, and this can be indicated by S(uij); that 
is, if treatment k is applied to unit uij then S(uij) = k. The 
observed yield on uij is 

The plot in block i to which treatment k is applied can be 
denoted by jk so that the observed yield of treatment k on 
block i is 

Yik = Yk(uijk)- 
In D. R. Cox's (1958) book on the planning of experi- 

ments he defined true treatment effects in an experiment in 
almost exactly the same way that we have defined causal 
effects. In an experiment with treatments TI, T2, he defined 
the true treatment effects as the difference between "the 
observation obtained on any unit when, say, TI is applied" 
and "the observation that would have been observed had, 
say, T2 been applied" (p. 15). Hence Cox appears to have 
accepted the idea that the response of a unit could be one 
value, Yt(u), if the unit were exposed to t and another, 
possibly different value, Yc(u), if the unit were exposed to 
c. Cox also made the assumption of constant effect in de- 
fining true treatment effects. His reasons for this are not 
clear but appear to be primarily technical rather than con- 
ceptual. He did not reject the idea of variable causal effects, 
however, and discussed ways in which causal effects might 
depend "on the value of some supplementary measure- 
ment that can be made on each unit" (p. 18). 

Curiously, R. A. Fisher, who founded the modern the- 
ory of experimental design, never dealt directly with the 
idea of multiple versions of the response. Instead, he gave 
examples that are so laced with specific details that it is 
not always clear what level of generality he meant to con- 
vey. For example, in the first article in which Fisher (1926) 
attempted to set out the principles of the design of field 
experiments in agriculture we find this question in a dis- 
cussion of a hypothetical experiment to evaluate the ap- 
parent productive value of treating a given acre of ground 
with a manurial treatment: 
What reason is there to think that, even if no manure had been applied, 
the acre which actually received it would not still have given the higher 
yield? (p. 504) 

It is fairly clear in this quotation that he could consider 
the possibility that had a different treatment (i.e., no man- 
ure) been applied to the field the resulting yield might have 
been the same. This clearly concerns the null hypothesis 
of no treatment effect and, more generally, Fisher came 
closest to the idea of multiple versions of the response in 
his discussions of the relationship between the null hy- 
pothesis and randomization. 

The earliest explicit reference that I have found to mul- 
tiple versions of the response is Neyman (1935). In his 
paper (read before the Industrial and Agricultural Re- 
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search Section of the Royal Statistical Society in March of 
1935) Neyman gave an explicit statement of the idea of 
multiple versions of the response (which is for Neyman the 
yield from an experimental plot of land in an agricultural 
experiment). Unfortunately, Neyman's discussion also in- 
troduced the notion of a stochastic element that is added 
to Y to allow for "technical errors" that are due to inac- 
curacies of experimental technique. If we ignore this prob- 
lem of measurement error and assume zero "technical er- 
rors," then Neyman's definition of a "true yield" explicitly 
refers to multiple versions of the response. "Thus Xij(k) 
will mean the 'true' yield of the kth object obtainable from 
the plot (i, 7')" (p. 110; by "object" Neyman means treat- 
ment). His notation is very similar to that used by Kemp- 
thorne. To put it into the notation of Section 3, the units 
are the plots, uij, and Xij(k) = Yk(uij), where Ydu) is de- 
fined as in the previous discussion of Kempthorne. 

Neyman also had an explicit expression for the average 
value of Xij(k) over all of the units, uij. It is X..(k). In the 
notation of Section 3 this is X..(k) = E(Yk). Hence it is 
clear that by the time Neyman was writing the idea of 
multiple versions of the response, one for each treatment, 
was established. It seems to have been used by writers 
concerned about the details of the effects of randomization 
in specific experimental plans (e.g., Cox 1958; Kemp- 
thorne 1952) but is generally not a part of the standard 
statistical notation of many other writers [an exception is 
Hamilton (1979)l. 

The Neyman (1935) reference is also relevant to the 
model in Section 3 because of the controversy between 
Fisher and Neyman that it engendered. The controversy 
revolves around the choice of null hypothesis in experi- 
ments such as randomized block designs. Fisher was quite 
clear that the null hypothesis that he proposed is that the 
causal effect (as we have defined it) is 0 for each unit. For 
example, in the famous discussion at the end of Neyman 
(1935) Fisher first quoted Neyman, as follows: 
. . . this bias vanishes when . . . the objects compared are reacting to 
differences in soil fertility in exactly the same manner. . . . This is not 
always true. (p. 153) 

Then Fisher wrote: 
However, it was always true in the case for which it was required, namely, 
when the hypothesis to be tested was true, that differences of treatment 
made no difference to the yields. (p. 157) 

Then Neyman, in responding to Fisher's remarks, empha- 
sized his interest in what I would call the average causal 
effect. 
Our purpose in the field experiment consists in comparing numbers such 
as X . ( k ) ,  or the average true yields which our objects are able to give 
when applied to the whole field.' It is seen that this problem is essentially 
different from what Professor Fisher suggested. So long as the average 
yields of any treatments are identical, the question as to whether these 
treatments affect separate yields on single plots seems to be uninteresting 
and academic. (p. 173) 

Fisher's sardonic reply indicates that, at least, he agreed 
that Neyman stated their differences clearly. "It may be 
foolish, but that is what the z test was designed for, and 
the only purpose for which it has been used7' (p. 173). 

Evidently, I would conclude that Neyman's null hypoth- 

esis is one of zero average causal effect, that is, E(Yt - 
Yc) = 0, whereas Fisher's is one of zero causal effect for 
all units, that is, Yt(u) - Yc(u) = 0 for all u â U. 

7. WHAT CAN BE A CAUSE? 
It may seem very extreme to some to limit the notion 

of cause to the sense used in Section 3. Aristotle set the 
stage for this, however, by distinguishing more than one 
meaning to the word cause. It might be better to ask, what 
can be an "efficient cause7' in his sense? Evidently even 
this restriction did not limit the notion of cause for such 
thinkers as Hume and Mill. Anything can be a cause for 
them-or, at least, a potential cause. 

Put as bluntly and as contentiously as possible, in this 
article I take the position that causes are only those things 
that could, in principle, be treatments in experiments. The 
qualification "in principle" is important because practical, 
ethical, and other considerations might make some exper- 
iments infeasible, that is, limit us to contemplating hypo- 
thetical experiments. For example, in the medical and social 
world we might be able to conceive of an experiment, but 
no one would ever try to carry it out. Instead, we might 
have to wait for a "natural experiment7' to occur. "Ob- 
servational study" is the term used by statisticians (e.g., 
Cochran 1983) to refer to studies for which "The objective 
is to study the causal effects of certain agents7' but "For 
one reason or another the investigator can not . . . impose 
on . . . or withhold from the subject, a treatment whose 
effects he desires to discover7' (p. 1). 

I believe that the notion of cause that operates in an 
experiment and in an observational study is the same. The 
difference is in the degree of control an experimenter has 
over the phenomena under investigation compared with 
that which an observer has. In Rubin's model this is ex- 
pressed by the joint distribution of S with Y, and Yc. Total 
control can make S independent of Y, and Yc. 

It may bother some readers that I have been using the 
term "experiment7' in a very restricted sense-though one 
that is common in the study of the design of experiments. 
For example, experiments in chemistry in which a sub- 
stance is analyzed into its component ingredients or in 
which ingredients are combined with each other to syn- 
thesize a new substance often may not have clearly iden- 
tifiable units, treatments, and response variables. My view 
is that in such experiments the Aristotelian notion of ma- 
terial cause is often more relevant than that of efficient 
cause, and hence such experiments are not concerned with 
the notion of cause that is discussed in this article. 

To return to the question of what can be a cause let me 
consider three examples of statements that involve the word 
cause but that vary in its exact usage. 

(A) She did well on the exam because she is a woman. 
(B) She did well on the exam because she studied for 

it. 
(C) She did well on the exam because she was coached 

by her teacher. 
I think that these statements, even though they are per- 

fectly understandable English sentences, vary in the mean- 
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ing of the "because" in each. In each, the effect, using the 
term loosely, is the same-doing well on an exam. The 
causes, again using the term loosely, are different. In (A) 
the "cause" is ascribed to an attribute she possesses. In 
(B) the "cause" is ascribed to some voluntary activity she 
performed, and in (C) it is ascribed to an activity that was 
imposed on her. 

An attribute cannot be a cause in an experiment, because 
the notion of potential exposability does not apply to it. 
The only way for an attribute to change its value is for the 
unit to change in some way and no longer be the same 
unit. Statements of "causation" that involve attributes as 
"causes" are always statements of association between the 
values of an attribute and a response variable across the 
units in a population. In (A) all that is meant is that the 
performance of women on the exam exceeds, in some sense, 
that of men. 

Examples of the confusion between attributes and causes 
fill the social science literature. Saris and Stronkhorst (1984) 
gave the following example of a causal hypothesis: "Scho- 
lastic achievement affects the choice of secondary school" 
(p. 13). These authors clearly intended for this hypothesis 
to state that an attribute of a student (i.e., scores on tests, 
performance in primary school) can cause (i.e., affect) the 
student's choice of a particular type of secondary school. 
It is difficult to conceive of how scholastic achievement 
could be a treatment in an experiment and, therefore, be 
a "cause" in the sense used in this article. A somewhat 
stronger statement of my point was given by Kempthorne 
(1978, p. 15): "It is epistemological nonsense to talk about 
one trait of an individual causing or determining another 
trait of the individual." 

At the other extreme is Example (C). This is easily in- 
terpreted in terms of the model. The interpretation is that 
had she not been coached by her teacher she would not 
have done as well as she did. It implies a comparison be- 
tween the responses to two causes, even though this com- 
parison is not explicitly stated. 

Example (B) is just one of many types of examples in 
which the applicability of the model is not absolutely clear, 
and it shows one reason why arguments over what consti- 
tutes a proper causal inference can rage without any defin- 
itive resolution. 

In (B) the problem arises because of the voluntary aspect 
of the supposed cause-studying for the exam. It is not 
clear that we could expose a person to studying or not in 
any verifiable sense. We might be able to prevent her from 
studying, but that would change the sense of (B) to some- 
thing much more like (C). We could operationally define 
studying as so many hours of "nose in book," but that just 
defines an attribute we could measure on a subject. In my 
opinion the application of the model to statement (B) is 
problematical and not easily resolved. The voluntary na- 
ture of much of human activity makes causal statements 
about these activities difficult in many cases. 

The voluntary aspect of the "cause" in (B) is not the 
only source of difficulty in deciding on the applicability of 
Rubin's model to specific problems. It is, however, a com- 
mon source of difficulty. 

The general problem, I think, is in deciding when some- 
thing is an attribute of units and when it is a cause that can 
act on units. In the former case all that can be discussed 
is association, whereas in the latter case it is possible, at 
least, to contemplate measuring causal effects. 

One may view Fisher's (1957) attack on those who used 
the association between smoking and lung cancer as evi- 
dence of a "causal link" between them as an example of 
the difficulty in deciding whether or not smoking is an 
attribute or a cause. Certainly the data that began this 
debate are purely associational. Doll and Hill's studies (1950, 
1952, 1956) ascertained only smoking status and lung can- 
cer status on sets of subjects. Fisher argued that smoking 
might only be indicative of certain genetic differences be- 
tween smokers and nonsmokers and that these genetic dif- 
ferences could be related to the development or not of lung 
cancer. Fisher (1957) did feel that "a good prima facie case 
had been made for further investigation." 

The response to Fisher's criticism can also be viewed as 
attempting to show that smoking should be thought of in 
causal terms rather than as indicative of a genetic attribute 
of subjects. For example, among his responses to Fisher, 
McCurdy (1957) pointed out that lung cancer rates increase 
with the amount of smoking and that subjects who stopped 
smoking had lower lung cancer rates than those who did 
not. Both of these arguments can be viewed as emphasizing 
the causal aspects of smoking-one can do more or less of 
it and one might stop doing it. A discussion of the entire 
debate was given by Cook (1980). 

8. COMMENTS ON CAUSAL INFERENCES IN 
VARIOUS DISCIPLINES 

This section will briefly consider discussions of causation 
in three disciplines-medicine, economics, and "causal 
modeling." In each case an attempt will be made to relate 
the discussion to Rubin's model for causal inference, but 
no attempt is made to be exhaustive or even representative 
in the selection of topics considered. 

8.1 Causation and Medicine + 

We begin with a simple, yet basic, example from medi- 
cine-the establishment of specific bacteria as the cause of 
specific infectious diseases. Yerushalmy and Palmer (1959) 
described the situation in the following terms: 
Almost from the very beginning, when bacteria were first found to cause 
disease, bacteriologists felt the need for a set of rules to act as guideposts 
in investigation of bacteria as possible causal agents in disease. (p. 28) 

These two authors described three postulates formulated 
by the great bacteriologist, Robert Koch, who discovered, 
among other things, the tuberculosis bacillus in 1882. Koch's 
postulates [also called the Koch-Henle postulates, Evans 
(1978)l are simple, no-nonsense criteria for deciding when 
a microscopic organism is implicated in a disease. Accord- 
ing to Yerushalmy and Palmer (1959), "while there is no 
single formulation of Koch's postulates-they can be stated 
as consisting essentially of the following: 

I. The organism must be found in all cases of the dis- 
ease in question. 
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11. It must be isolated from patients and grown in pure 
culture. 

111. When the pure culture is inoculated into susceptible 
animals or man, it must reproduce the disease." (p. 
30) 

Rubin's model applies rather clearly to Postulates I and 
111. Postulate I is simply Mill's method of agreement ap- 
plied to this problem. It ensures that there are no data to 
support a null causal effect in this case-that is, if there 
were bona fide cases of the disease in which the organism 
was not present, along with other cases of the disease in 
which it was, then assuming unit homogeneity we would 
have an estimate of zero causal effect for the presence of 
the organism relative to its absence. Postulate I11 is like 
the light switch example-put in the organism and the 
disease occurs. The validity of this postulate stems from 
the unstated assumption that had the animal or human not 
been inoculated with the culture the disease would not have 
been expected to occur. Note that the word "susceptible" 
has crept in, presumably to deal with the inevitable %on- 
constant conjunction" of real laboratory work-in this case, 
the immune system. 

Koch's second postulate relates more to good experi- 
mental techniques than to causal inference. If the organism 
is isolated from patients and grown in pure culture, then 
when it comes time to inoculate animals or people with it 
the experimenter knows what the inoculant is in fairly exact 
terms. In a sense, Postulate I1 is a way of minimizing mea- 
surement error in the treatment (t) that is exposed to the 
units. 

Medicine is more difficult when the biological theory is 
less well developed. As an example I now consider several 
suggestions made by Sir Austin Bradford Hill to those who 
might wish to separate association from causation in the 
study of the environment and disease. He had spent a 
lifetime in public health and was among the first to argue, 
quantitatively, for the causal link between smoking and 
lung cancer (Doll and Hill 1950, 1952, 1956). Hill (1965) 
named nine factors that he felt were useful in such work 
for deciding that the most likely interpretation of an ob- 
served association is causation. I will consider these in an 
order that differs from Hill's. 

Temporality. "Which is the cart and which the horse?" 
(Hill 1965, p. 297). Hill felt that while the time sequence 
of events, cause preceding effect, might not be difficult to 
establish in many cases, "it certainly needs to be remem- 
bered, particularly with selective factors at work in indus- 
try" (p. 298). Clearly, temporal succession is a given for 
Hill. 

Experiment. In this category Hill placed the occasional 
"natural experiment" that gives strong evidence for caus- 
ation. He had in mind the effect of preventative actions 
taken to reduce the incidence of the disease. Do they work? 
If a person stops smoking does he lower his risk of lung 
cancer? Hill clearly views such "experiments" in the same 
way Mill viewed the production of an effect by artificially 
introducing the presumed causal agent-strong causal evi- 
dence when you can find it. 

Biological Gradient. By this Hill referred to evidence 
that showed an increasing disease rate as exposure to the 
agent in question intensified. Both experiment and biolog- 
ical gradient may be viewed as emphasizing the causal na- 
ture of the proposed causal agent, as discussed in the pre- 
vious section. 

Plausibility, Coherence, Analogy. I have grouped these 
three together because they all refer to the prior knowledge 
that the epidemiologist would need to consider. Is the sus- 
pected causation biologically plausible? Is it coherent in the 
sense of not being seriously in conflict with known facts? 
Is it analogous to known causal relations for similar agents 
and diseases? These factors, although important in some 
cases, all reflect the state of relevant scientific knowledge 
and do not directly translate into aspects of the model of 
Section 3. In particular Hill felt that it was unwise to place 
undue emphasis on these because of the relatively poor 
state of relevant biological knowledge in many cases of 
interest. 

Although Hill felt that the six factors listed above were 
important from time to time, they were the six least sig- 
nificant factors on his list. He felt that the three most 
important factors are the strength, consistency, and speci- 
ficity of the association in question. 

Strength. This is Hill's first factorÃ‘UFirs upon my list 
I would put the strength of the association" (p. 295). This 
may be viewed as simple acceptance of Mill's method of 
concomitant variation in practical terms or of the scientific 
utility of the prima facie causal effect. Although there is 
no guarantee for this, it is often more likely that a larger 
prima facie causal effect will hold up when a controlled 
study is performed than will a smaller prima facie causal 
effect. A relevant result in this regard is the inequality 
given in Cornfield et al. (1959) that bounds the influence 
of unmeasured factors on the relative risk (a form of prima 
facie causal effect). 

Consistency. Hill's second significant factor concerns 
the generality of the association across populations of units. 
This might be viewed as a weakened form of constant 
conjunction. At the very least, an association that is present 
in one population and absent in another suggests variable 
causal effects. I think that there is a clear bias against calling 
variable causal effects "causal" by scientists, even though 
those who must deal with heterogeneous units, such as 
humans, will generally agree that it is usually too much to 
expect constant effects in the real world. 

Specificity. Hill's third factor refers to specific causes 
having specific effects. 
If . . . the association is limited to specific workers and to particular sites 
and types of disease and there is no association between the work and 
other modes of dying, then clearly that is a strong argument in favor of 
causation. (p. 297) 

I think that specificity is related to the believability of 
the independence assumption. The lack of an association 
between the exposure of a person to a particular work place 
and the causes of that person's death supports the inde- 
pendence assumption in a relevant way (but does not prove 
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the assumption is valid). Since the independence assump- 
tion implies that the prima facie causal effect equals the 
average causal effect, specificity, in conjunction with the 
strong association, may well be convincing evidence of a 
strong causal connection. Lack of specificity, however, does 
not disprove the independence assumption in many cases, 
and this explains why lack of specificity is not regarded as 
a serious problem by Hill. 
In short, if specificity exists we may be able to draw conclusions without 
hesitation; if it is not apparent, we are not thereby necessarily left sitting 
on the fence. (p. 297) 

Of course, specificity does not guarantee that the inde- 
pendence assumption is valid, but it does not directly con- 
tradict this assumption in the way that a lack of specificity 
does. 

8.2 Granger Causation in Economics 
The primary source of data that is available to econo- 

mists is so-called "time series" data in which measurements 
of a variable or set of variables are made repeatedly on an 
economic entity over time. For such data, Granger (1969) 
developed a particular notion of causality that some econ- 
omists have found useful in their analyses. 

In my opinion, however, Granger's essential ideas in- 
volving causation do not require the time-series setting he 
adopted. I will try to restate his theory in terms of the types 
of models used in Sections 2 and >that is, variables de- 
fined on a population of units. Granger formulated his 
theory around the idea of prediction-a "cause" ought to 
improve our ability to predict an effect in a probabilistic 
system. In Granger's theory a variable causes another vari- 
able; that is, the values of one variable improve one's ability 
to predict the future values of another variable. The only 
important way that his theory used the time-series setting 
was to separate variables into those whose values are de- 
termined prior to, at, or after a given point in time. I will 
simply adopt these temporal distinctions in the definitions 
of the variables that arise. Granger (1969, p. 430) clearly 
accepted the idea of temporal succession in his analysis: 
"In the author's opinion there is little use in the practice 
of attempting to discuss causality without introducing time." 
It is the past values of a variable that cause, in Granger's 
sense, the future values of another variable. 

Although Granger originally formulated his theory in 
terms of one variable causing another, later writers (e.g., 
Florens and Mouchart 1985) restated it in terms of non- 
causality and I will follow that approach. In reformulating 
his theory I will also shift from his emphasis on a particular 
type of predictor, that is, "the optimum, unbiased, least- 
squares predictor" (p. 428), to the more generally appli- 
cable notion of conditional statistical independence. This 
means that instead of limiting attention to the inability of 
a specific predictor to predict the values of a variable, I 
will use the stronger condition that no predictor can predict 
the desired values. Although this is a stronger type of non- 
causality than Granger defined I do not believe that this 
unduly distorts Granger's theory and it certainly general- 
izes its applicability-indeed, see Granger (1980). 

If X, Y, and Z denote three (possibly vector-valued) 
variables defined on a population, then X and Yare con- 
ditionally independent given Z if 

Conditional independence is a strong form of the idea that 
the values of X are unable to predict the values of Y, given 
the values of Z. 

In Granger's time-series setting, the value of Y is de- 
termined at some time point s, and the values of X and Z 
are determined at or prior to some other time point r < 
s. I will say that Xis  not a Granger cause of Y (relative to 
the information in Z) if X and Y are conditionally inde- 
pendent given Z. Thus Xis a Granger cause of Y if different 
values of X lead to different predictive distributions of Y 
given both X and the information in Z, that is, if X helps 
predict Y even when Z is taken into consideration. 

Viewed in this way, Granger noncausality is very much 
like Suppes's notion of a spurious cause. Both involve the 
inability of the spurious cause to predict a future event or 
value given certain other information. 

How might Granger's ideas be applied to the setting in 
Section 3? It is natural to make the following identification 
of Granger's setting with elements of Rubin's model. 

Granger Rubin's Model 
Y ys 
x s 
Z A set of pre-exposure 

variables also called Z. 

The conditional independence condition is 

Pr(Ys = y 1 S = t, Z) = Pr(Ys = y 1 Z), 
and this reduces to 

0 = {Pr(Yt = y 1 S = t, Z) - Pr(Yc = y \ S = c, Z)} 
x Pr(S = c 1 2).  (31) 

In a randomized experiment 
Pr(S = c l  Z) = Pr<S = c), 

which we assume lies strictly in (0, 1). Hence Equation 
(31) reduces to 

Pr(Y, = y \S = t ,  Z) = Pr(Yc = y \ S = c, Z). (32) 
But under randomization S is independent of Yt, Yc, and 
Z, so Equation (31) becomes 

Pr(Y,= y 1 Z) = Pr(Yc = y 1 Z), (33) 
which, in turn, implies that 

for all values of Z. If we define the average causal effect 
on the subpopulation specified by Z = z as 

then Equation (34) says that if S is not a Granger cause of 
Ys relative to Z, then T(z) = 0 for all values of z. Hence 
in a randomized experiment Granger noncausality implies 
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zero average causal effect on all subpopulations defined 
by the values of 2. Conversely, it is easy to see that if t 
has a null effect on all units, then in a randomized exper- 
iment S will not be a Granger cause of Ys relative to any 
Z that is a pre-exposure variable. 

Although Granger causality has some intuitively satis- 
fying properties with respect to Rubin's model, it fails, in 
my opinion, to get to the heart of the notion of causality 
in the same way that Suppes's theory of causality fails. 
Granger's "causes" are always only temporarily in that 
category. If an analyst simply gathers more information, 
that is, changes Z, an X that was once a Granger cause of 
Y might be shown to be only a spurious cause in exactly 
the same spirit as in Suppes's theory. 

8.3 Causal Models in Social Science 
No discussion of causal inference would be complete 

without some reference to the expanding literature on causal 
modeling, that is, Blalock (1971), Goldberger and Duncan 
(1973), Duncan (1975), and Saris and Stronkhorst (1984). 
Little work has been done to relate Rubin's model to those 
used in the causal modeling literature-an exception is 
Rosenbaum (1984b), in which the average causal effect in 
a population is related to coefficients that arise in certain 
linear path models. The relationship between these two 
types of models is a natural research topic, since both causal 
models and Rubin's model were developed to deal with 
the same problem-causal inference in nonexperimental 
research. 

In this section I will hint at some possible points of con- 
tact between the path diagrams that are used in causal 
modeling and the model used in this article. I think that 
this is a large topic, and I can only scratch its surface here. 

Path diagrams are used to represent visually causal re- 
lationships among a set of variables. For example, if X 
causes Y this is expressed by the diagram 

From the point of view adopted in this article some dia- 
grams like (36) are meaningful and some are not. For ex- 
ample, if A is an attribute of units and Y is a response 
variable, then 

is meaningless. On the other hand, if S indicates exposure 
to causes and Ys is an observed response variable, then 

is a meaningful diagram. 
What happens when we add a third variable to this sys- 

tem? There are several possibilities. If A is an attribute, 
then it is either a pre- or post-exposure variable. In the 
first case we might denote this as 

A S + Y S  (39) 
to indicate the time flow but without any arrow from A to 
S or Ys. In the second case the value of A might be affected 
by exposure to the cause and we would need to indicate 

that by subscripting A, At, and Ac. This suggests the dia- 
gram 

S + (As, Ys). (40) 
It indicates that S changes the values of both A and Y This 
is the situation analyzed by Rosenbaum (1984b). 

The other possibility is that the third variable is an in- 
dicator, R, of a second set of causes, say t' and c'. If the 
R causes act on the units at the same time that the S causes 
do, then we can combine R and S into a single causal 
indicator (R, S). Y must then be doubly subscripted to 
indicate the responses to the various (R, S) combinations, 
that is, YRs. This can be denoted by the diagram 

The fact that the R causes and the S causes act at the same 
time is not really important for Diagram (41). It really says 
that the R causes do not affect exposure to the S causes, 
and vice versa. We get an essentially new case, however, 
when, for example, the R causes act temporally prior to 
the S causes and they affect the exposure of units to the S 
causes. This requires that S be subscripted by t' or c', that 
is, 

Stl(u) and Sc(u). (42) 
Although it is a mouthful, here is what S,t(u) denotes: Stf(u) 
is the S cause that u is exposed to if u was earlier exposed 
to the R cause t ' .  The following path diagram expresses 
this situation: 

SR 

\ (43) 
R - YRSR 

Diagram (43) indicates that R changes the values of S and 
Y and that S changes the value of Y R has, potentially, 
both a direct and an indirect (i.e., through S) effect on Y 

An example may help clarify the meaning of (43). Sup- 
pose that we wish to measure the effect of studying certain 
material on the performance on a particular test. We might 
be able to encourage or not encourage students to study 
the material-these are the R causes, t' and c' .  We might 
then be able to ascertain whether the students did or did 
not study the material-these are the S causes, t and c. 
The response variable is the score Y on the test given 
subsequent to these events. Diagram (43) indicates that 
encouragement can affect studying and possibly the test 
scores and that studying can affect the scores. For example, 
one might hypothesize that encouragement really does not 
affect test scores directly. This would be expressed in the 
model by 

Yt-s(u) - Yc's(u) = 0 (44) 
for all u in U and s = to r  c. For more on "encouragement 
designs" see Powers and Swinton (1984). 

The essential point I wish to make about these diagrams 
is that they are easily interpreted in terms of Rubin's model 
when they are not causally meaningless. The causal model 
literature has not been careful in separating meaningful 
and meaningless causal statements and path diagrams, in 
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my opinion. For a similar view see Kempthorne (1978). 
One expects that the application of Rubin's model will help 
clarify the meaning of complex causal models and their 
path diagrams. 

9. SUMMARY 
This article has covered a variety of topics that involve 

causation, but there are a few general points that, I think, 
are important enough to emphasize in summary. 

First of all, I believe it is very helpful to try to see what 
experiments (as the term is used by statisticians) tell us 
about causation. I have emphasized three ideas about cau- 
sation on which statistical experiments focus our attention. 

1. The analysis of causation should begin with studying 
the effects of causes rather than the traditional approach 
of trying to define what the cause of a given effect is. 

2. Effects of causes are always relative to other causes 
(i.e., it takes two causes to define an effect). 

3. Not everything can be a cause; in particular, attributes 
of units are never causes. 

Let me make a few brief comments on each of these 
important ideas. 

Traditional analyses of causation start by looking for the 
cause of an effect. I think that looking for causes of effects 
is a worthwhile scientific endeavor, but it is not the proper 
perspective in a theoretical analysis of causation. More- 
over, I would hold that the "cause" of a given effect is 
always subject to revision as our knowledge about the phe- 
nomenon increases. For example, do bacteria cause dis- 
ease? Well, yes . . . until we dig deeper and find that it is 
the toxins the bacteria produce that really cause the dis- 
ease; and this is really not it either. Certain chemical re- 
actions are the real causes . . . and so on, ad infinitum. 
The effect of a cause may be difficult to measure in some 
circumstances, but it is, at least, precisely definable-as 
done in Section 3. It is for this reason that I believe that 
formal theories of causation must begin with the effects of 
given causes rather than vice versa. 

That an effect requires two causes for its definition is 
obvious in the context of an experiment but never seems 
to get much recognition by those who discuss causation in 
general terms. This is probably an important contribution 
of statistical thinking to discussions of causation. Experi- 
ments without control comparisons are simply not exper- 
iments. Those who think in terms of physical science ex- 
periments may have some difficulty with this idea, but I 
believe that it is true of any experiment. 

That everything has a cause is sometimes called the law 
of causality, but it does not imply that everything can be a 
cause. The experimental model eliminates many things 
from being causes, and this is probably very good, since it 
gives more specificity to the meaning of the word cause. 
Donald Rubin and I once made up the motto 

NO CAUSATION WITHOUT MANIPULATION 

to emphasize the importance of this restriction. Although 
many people balk at the idea that causes might be limited 
in some way, this idea is a simple consequence of the struc- 

ture of the model in Section 3. Unless both Y/u) and Yc(u) 
can be defined, in principle, it is impossible to define the 
causal effect Yt(u) - Yc(u). For an attribute A(u) we can 
define Yy(u) for all u for which A(u) = a, and we can 
define Yb(u) for all u for which A(u) = b. Attributes are 
functions, however, and A(u) is either a or b (or neither) 
but not both a and b for any unit, u. Hence Yy(u) - Yb(u) 
cannot be defined for any unit, u, and attributes are not 
causes in the sense that causal effects cannot be defined 
for them. 

The second set of important general points I wish to 
summarize concern the immediate consequences of Rub- 
in's model. There are two consequences I wish to empha- 
size. 

1. The difference between the model (S, Y,, Yc) and the 
process of observation (S, Ys). 

2. The Fundamental Problem of Causal Inference-only 
Yt or Yc but not both can be observed on any unit u. 

These two consequences are really the same thing said 
in different ways. It is a great mistake to confuse Yt or Yc 
with Ys, and yet this is done all the time. It is also a mistake 
to conclude from the Fundamental Problem of Causal In- 
ference that causal inference is impossible. What is im- 
possible is causal inference without making untested as- 
sumptions. This does not render causal inference impossible, 
but it does give it an air of uncertainty. It is the same 
uncertainty discussed by Hume. The strength of a model 
like Rubin's is that it allows us to make these assumptions 
more explicit than they usually are. When they are explic- 
itly stated the analyst can then begin to look for ways to 
evaluate or to partially test them. 
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Comment 
Which Ifs Have Causal Answers 

DONALD B. RUBIN* 

If all the world were apple pie, 
And all the sea were ink, 

And all the trees were bread and cheese, 
What should we have for drink? 

-The Real Mother Goose 

I congratulate my friend Paul Holland on his lucidly 
clear description of the basic perspective for causal infer- 
ence referred to as Rubin's model. I have been advocating 
this general perspective for defining problems of causal 
inference since Rubin (1974), and with very little modi- 
fication since Rubin (1978). The one point concerning the 
definition of causal effects that has continued to evolve in 
my thinking is the key role of the stable-unit-treatment- 
value assumption (SUTVA, as labeled in Rubin 1980) for 
deciding which questions are formulated well enough to 
have causal answers. 

Under SUTVA, the model's representation of outcomes 
is adequate. More explicitly, consider the situation with 
N units indexed by u = 1, . . . , N; T treatments indexed 
by t = 1, . . . , T; and outcome variable Y, whose possi- 
ble values are represented by Yfu (t = 1, . . . , T;  u = 
1, . . . , N). SUTVA is simply the a priori assumption that 
the value of Y for unit u when exposed to treatment twill 
be the same no matter what mechanism is used to assign 
treatment t to unit u and no matter what treatments the 
other units receive, and this holds for all u = 1, . . . , N 
and all t = 1, . . . , T. SUTVA is violated when, for 
example, there exist unrepresented versions of treatments 
(Yfu depends on which version of treatment t was received) 
or interference between units (Yfu depends on whether 
unit u' received treatment t or t'). 

FISHER'S NULL HYPOTHESIS AS A SPECIAL CASE 
O F  SUTVA 

SUTVA is automatically satisfied under the Fisher (1935) 
null hypothesis of absolutely no treatment effects of any 
kind, HF, since under HF the treatment labels are abso- 
lutely irrelevant: the values of outcome Y for unit u are 
exactly the same for all treatments, 

HF: Yfu = Yffu for all u and all pairs t, t'. (1) 
Thus when Fisher's null hypothesis is tested, which is typ- 
ically but not necessarily done only in randomized exper- 
iments using randomization tests, a particular case of SUTVA 
is always assumed. If HF is rejected, all that can be said is 
that this representation using a very special case of SUTVA 
is inadequate. 

For example, many common language uses of "cause" 

* Donald B. Rubin is Professor, Department of Statistics, Harvard 
University, Cambridge, MA 02138. 

are essentially statements of a Fisher null hypothesis. Con- 
sider 

The sun causes the planets to travel in their orbits, (2) 
in which the implied treatments are "sun" and "no sun," 
the unit is the group of planets, and Y is an indicator for 
their current orbits; or 

If John Doe had been born a female, 
his life would have been different, (3) 

in which the implied treatments are "born as male" and 
"born as female," John Doe is the only unit, and Y is an 
indicator for his life as a male. In both Statements (2) and 
(3), all that is being claimed causally is that Fisher's null 
hypothesis is to be rejected: no matter how the units would 
be actually exposed to the relatively vague other treatment 
("no sun" and "born as female"), the outcome would not 
be identical to the outcome under the existing treatment. 
Neither statement carries with it a precise description of 
the other treatment (the precise manipulations that would 
constitute exposure to the other treatment) nor a precise 
description of an alternative hypothesis under which SUTVA 
is satisfied but He is not. 

Thus in the context of statement (3), the claim is simply 
that if John Doe were born female instead of male, whether 
because of some hypothetical Y to X chromosome treat- 
ment at conception, or massive doses of hormones in utero 
that would lead to female morphology at birth, or an at- 
birth sex-change operation, or so forth, John Doe's life 
would have been different. I accept this as a meaningful 
causal statement. Since maleness is an attribute of John 
Doe, however, Holland might not consider Statement (3) 
to be a meaningful causal claim, and similarly with State- 
ment (2). 

In any case, more careful consideration of the implica- 
tions of SUTVA is required whenever sizes of causal effects 
are of interest or null hypotheses regarding typical causal 
effects are to be evaluated, because then actual values 
under more than one treatment must be contemplated. My 
formulation of Neyman's null hypothesis of no average 
causal effect differs somewhat from Holland's because I 
believe that versions of treatments are implicit in Neyman's 
discussion yet are absent from Holland's description of it. 

NEYMAN'S NULL HYPOTHESIS FORMULATED TO 
SATISFY SUTVA 

Consider the case of two fertilizers A and B, N units, 
which are plots of land at the time of an experiment, and 
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the outcome Y, which is crop yield on the plots. Each 
fertilizer has m (m very large) versions {Ai, A;, . . . , Am} 
and {Bi, B2, . . . , Bm} corresponding to different bags, 
where one bag is needed to fertilize a plot. The bags are 
known to vary somewhat in effectiveness, and thus SUTVA 
only holds exactly when all 2m versions of the fertilizers 
are represented as treatments by 2m outcomes (i.e., t = 
Ai, . . . , Am, Bl, . . . , Bm). Using only two treatments, 
A and B, violates SUTVA because the value of Y for unit 
u under treatment A (or B) depends on which bag was 
used. 

The causal question of primary interest concerns the 
typical yields of plots when exposed to fertilizer A relative 
to their yields when exposed to fertilizer B. A natural way 
to specify this question is to define the average A versus B 
differential yield for plot u as 

and then define the causal estimand as the average A versus 
B differential yield, 

I believe that this formulation is implicit although cer- 
tainly not explicit in Neyman (1935). It differs from Hol- 
land's interpretation of Neyman in that Holland uses the 
two-treatment formulation, which violates SUTVA be- 
cause of "technical errors . . . due solely to the inaccuracy 
of experimental technique" (Neyman 1935, p. 110). Non- 
additivity of treatment effects [YtU - YtlU being a function 
of u as well as (t, tl)] arose in Neyman because of "soil 
errors" due to "variation in fertility of the plots." 

Accepting the causal estimand defined in (4) and (5), 
Neyman's null hypothesis, HN, is that the average differ- 
ential effect of fertilizer A versus fertilizer B is 0, 

In contrast, the Fisher null hypothesis is given by (I), where 
t and t1 = Al, . . . , Am, Bl, . . . , Bm. 

In an ideally designed randomized experiment in which 
bags of each type of fertilizer are randomly chosen and 
randomly applied to plots, it is relatively straightforward 
to address HN as well as Hp, although not necessarily using 
identical statistical tools. But in other cases, HN is more 
difficult to address than HiÃ‘simpl suppose that fertilizers 
A and B were randomly assigned to plots, but the bags of 
A and the bags of B to be used on the plots were carefully 
selected by the manufacturer of A. 

APPLYING SUTVA TO SEX DISCRIMINATION 
Careful consideration of SUTVA is especially important 

for clarifying questions that cannot be addressed by ran- 
domized experiments and for deciding precisely in what 
sense such questions can have causal answers. As a specific 
example, consider the following statement: 
If the females at firm f had been male, their 
starting salaries would have averaged 20% higher. (6) 

I believe Holland would claim that Statement (6) is causally 
meaningless because "femaleness" is an attribute. I too 
believe that Statement (6) is causally meaningless, but for 
a possibly different reason: the statement, by itself, is too 
vague to have a clear formulation satisfying SUTVA and 
thus is too vague to admit a clear causal answer. What are 
the units, treatments, and outcomes such that SUTVA is 
satisfied? I am not at all sure how to define anything except 
Y, which clearly involves starting salary. 

One range of possibilities for making (6) more precise 
is generated by considering the units to be the female em- 
ployees at entry and the treatments to be "female," which 
is well defined since the units are females, and "male," 
which has many possible versions ranging from some hy- 
pothetical "at conception X to Y chromosome treatment" 
to replacing an "F" with an "M" on a job application form. 
Certainly these different versions of the treatment "male" 
could lead to vastly different outcomes, and so SUTVA is 
totally implausible without agreement on which version of 
the treatment "maleness" is under study or agreement on 
a way to average over some collection of such versions. 

Another possibility, and one more closely tied to poten- 
tial real-world manipulations, is to consider the firm to be 
the unit, multivariate Y to be the starting salaries of the 
female employees, and the treatments to be "current hiring 
practices" and "hiring practices as would take place under 
court supervision." Or perhaps the job slots in the firm are 
the units, Y is the starting salary in each job slot, and 
applicants are the treatments: type A treatments are the 
female applicants and type B treatments are the male ap- 
plicants, using the notation used for Neyman's null hy- 
pothesis. For related discussion of this perspective, see 
Pratt and Schlaifer (1984), especially the rejoinder to the 
discussion by Rosenbaum and Rubin (1984). 

In any case, the crucial point with Statement (6) is that 
we are not ready to estimate, test, or even logically discuss 
causal effects until units, treatments, and outcomes have 
been defined in such a way that SUTVA is plausible. 

NO CAUSATION WITHOUT MANIPULATION? 
Since statisticians who study causal effects usually do so 

for the purpose of drawing inferences about the effects of 
actual manipulations to which some group of units have 
been or might be exposed, the motto "no causation without 
manipulation" is a critical guideline for clear thinking in 
empirical studies for causal effects. Thinking about actual 
manipulations forces an initial definition of units and treat- 
ments and thereby increases the likelihood of a formulation 
in which SUTVA is plausible. Such clarity is essential, yet 
commonly absent, in policy-oriented studies in which de- 
cisions to implement real-world manipulations can result 
from the statistician's causal inferences. 

ADDITIONAL REFERENCES 
Fisher, R. A. (1935), The Design of Experiments, Edinburgh: Oliver & 

Boyd. 
Pratt, J. W., and Schlaifer, R. (1984), "On the Nature and Discovery of 

Structure" (with discussion), Journal of the American Statistical As- 
sociation, 79, 9-33. 



Comment 
D, R. COX* 

It is a pleasure to have the chance of congratulating 
Holland on an exceptionally lucid article on an important 
topic. Indeed the issues explicitly and implicitly raised by 
the article seem to me more important for the foundations 
of our subject than discussion of the nature of probability, 
perennially intriguing though that may be. Philosophy is 
often regarded by scientists, on this side of the Atlantic at 
least, as an irredeemably "soft" subject, but here is a mat- 
ter both of philosophical interest and also with important 
practical implications, for example, for the interpretation 
of coefficients in multiple regression equations. 

The question of what can constitute a cause in this con- 
text is a key issue, and there is need for some good ter- 
minology. Cox and Snell(1981, p. 12) called variables that, 
in the context under consideration, should not be regarded 
as treatments, intrinsic variables. A subdivision into those 
associated with the individual person, animal, or whatever 
and those associated with the environment is sometimes 
useful. It might also be useful to distinguish between treat- 
ments and quasitreatments. In addition, the term nonspe- 
cific (Cox 1984) may be used for strata, blocks, and so 
forth that are normally intrinsic, but with no clearly spec- 
ified unique characterization. 

The notion that certain variables cannot properly be re- 
garded as causes is most concisely encapsulated in the phy- 
sicists' notion that passage of time cannot be regarded as 
a cause: of course, a process going on in time, such as 
molecular rearrangement, could be a cause, because it is 
possible to conceive of time passing without the rearrange- 
ment in question taking place. 

In some observational studies the distinction between 
quasitreatment and intrinsic variables is a matter of view- 
point and may not be clear-cut. Think, for example, of an 
observational study of alcohol consumption related to some 
outcome variable. 

One point deserving emphasis is the need for careful 
specification of what constitutes a particular treatment, 
including what may be subsidiary consequences. This may 
be crucial if technically correct but nevertheless misleading 
conclusions are to be avoided. In studying the effect of 
alcohol, is diet held fixed? 

A celebrated, if possibly apocryphal, example concerns 
an agricultural field trial in which one treatment led to such 
a superior quality and quantity of product that birds for 
many kilometers around gathered to consume the product, 
leading to poor final yield. Does that treatment cause poor 
yield? In one sense, yes. Similar points arise in clinical 
trials in connection with the distinction between intention 
to treat and per protocol analyses. The point partly is that 
the difficulties of observational studies cannot be totally 

avoided in randomized experiments, if one is to look in 
depth at interpretation. The searching discussion of Pratt 
and Schlaifer (1984) is very relevant. 

This is related to the issue of "layers" of interpretation. 
Is not the reason that one expects turning a light switch to 
have the result it does not just direct empirical observation 
but a subtle and deep web of observations and ideas-the 
practice of electrical engineering, the theory of electrical 
engineering, various ideas in classical physics, summarized, 
in particular, in Maxwell's equations, and underneath that 
even ideas of unified field theory? One reason that the 
notion of "cause" is so important is that it carries sugges- 
tions of relations at a deeper level of interpretation than 
the direct observation under study. 

My final comment concerns absence of interaction or 
presence of unit-treatment additivity. Holland suggests in 
Section 6 of his article that this might have been regarded 
as a "technical" requirement, whatever that might mean. 
In fact it seems to me to be of great importance from 
various points of view. First the condition is not wholly 
operationally verifiable, as Holland carefully discusses. A 
rigid adherent of operationalism might, therefore, regard 
the condition as meaningless; in fact, so far as I can see, 
rigid operationalism went out of favor a long time ago, 
both in philosophy with the decline of logical positivism 
and in physics with increased emphasis on quantum me- 
chanics. Yet it represents a fine ideal, that all assumptions 
and concepts should be capable of direct verification, but 
in the present context, and in many others, partial oper- 
ationalism seems to be the most one can reasonably get. 
This is that certain aspects of the assumption can be tested. 

Thus in the present context one could detect use of an 
inappropriate scale, or, as soon as intrinsic variables are 
available, examination for treatment x intrinsic interac- 
tion becomes feasible. Such considerations are important 
both for understanding and for examining possible extrap- 
olation of the conclusions to new units. When no such 
furtherinformationis available thetechnicalquestionsraised 
by Neyman for the Latin square remain (Wilk and Kemp- 
thorne 1957); that is, is the usual analysis unbiased? I think 
it is arguable that the analysis is unbiased in a reasonable 
sense (Cox 1958), but admittedly a somewhat contorted 
view of the question under study is needed. 

In conclusion, I welcome the article as an account of 
underdiscussed issues of considerable importance. 
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Comment 
Statistics and Metaphysics 

CLARK GLYMOUR* 

1, INTRODUCTION 
Holland's paper is as much philosophical analysis as it 

is statistics. The general lines of the account of causal re- 
lations he gives are familiar to philosophers, although he 
does not discuss any of the philosophical literature in which 
they may be found. I will try to place Holland's account 
in the framework of contemporary philosophical discus- 
sions of causality. I agree with the general thrust of his 
analysis, but I think certain restrictions he imposes are 
unwarranted, and I will say which they are, and why I 
think them unjustified. 

Holland's account of causality is counterfactual. A fair 
paraphrase of his analysis is this: 

Treatment t causes individual u to have the value Y, for 
variable Y rather than the value Yr for that variable if and 
only if u received treatment t, u has the value Y,, and if u 
had received the treatment c rather than the treatment t, 
then u would have the value Yc for variable Y 

Holland imposes conditions on this analysis, conditions 
that can be thought of as further explications of what he 
means it to say: 

1. It must have been possible for u to have received 
treatment c rather than treatment t. 

2. A treatment t can only be a cause of individual u 
having the value Y, rather than Yr provided t is a treatment 
that is applied to that same individual, u, and c is a treat- 
ment that could have been applied to that same individual. 

3. Causation is a relation between two treatments and 
two possible variable states. The notion of t causing Y,, 
without specification of any alternative treatment, or any 
alternative state of Y, is not defined. 

I will consider these conditions later. First, I want to 
address the philosophical context. 

2. COUNTERFACTUALS AND CAUSALITY 
Notice that the clause following the phrase "if and only 

if" in my paraphrase of Holland's account is a counterfac- 

tual conditional. It is a sentence of the form (neglecting 
tense): 

If X were the case then Y would be the case. 

Such sentences exhibit logical features that have inter- 
ested philosophical logicians for some years. Their logical 
features include the following: 

1. Counterfactuals can be logically false: 
If X were the case then X and not X would be the case. 

2. Counterfactuals can logically entail one another: 
If X were the case then Y would be the case 

entails 
If X were the case then Y or Z would be the case. 

3. Counterfactuals have different logical entailment re- 
lations than do ordinary material conditionals. 

If X then Y 
entails 

If X and Z then Y, 
but 

If X were the case then Y would be the case 

does not entail 
If X were the case and Z were the case then Y would 
be the case. 

("If I had struck the match just now it would have lighted" 
is true, but "If I had struck the match just now and there 
had been no oxygen in the room, it would have lighted" is 
false.) 

There are two principal ways to give a theory of the 
logical structure of some piece of reasoning. Both share 
the presupposition that the reasoning can be represented 
in a formalized language. One way is to characterize the 
logic axiomatically, by specifying an initial set of logical 
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truths and a set of rules of derivation, such that all and 
only the logical truths are derivable from the axioms, and 
such that if an inference is valid, then the conclusion of the 
inference is derivable from. the premises of the inference. 
Another way to characterize logical structure is through 
formal semantics. A semantic characterization specifies a 
class of possible interpretations of the language and what 
it is for a sentence in the language to be true under an 
interpretation. The logical truths are then those that are 
true under every possible interpretation; valid arguments 
are those for which no interpretations exist making their 
premises true and their conclusion false. The aim of phil- 
osophical logicians studying some logical feature of lan- 
guage is to represent that feature in a formalized language, 
to characterize it both axiomatically and semantically, and 
to prove that the two characterizations determine exactly 
the same class of logical truths and the same collection of 
valid arguments. 

There are two well-known logical theories of coun- 
terfactual conditionals, one due to Robert Stalnaker at 
Cornell University (Stalnaker 1984), the other to David 
Lewis (Lewis 1973, 1983), who is Holland's neighbor at 
Princeton University. There is also a logical theory of tensed 
counterfactual conditionals due to Richmond Thomason 
(Thomason and Gupta 1980). The Stalnaker and Lewis 
theories differ slightly, but the semantic characterization 
Stalnaker gives is especially simple, and I will, therefore, 
use it. 

Imagine that there are a collection of possible worlds, 
much as in science fiction stories, and that in each possible 
world every sentence that is not counterfactual and is in 
our formalized language is either true or false. Further 
imagine that there is a relation between possible worlds, a 
relation of closeness. Finally, assume that for every pos- 
sible world w and every logically possible condition A, 
there is a unique world that is the closest world to w in 
which A is true. If A happens to be true in w, then w itself 
is that closest possible world. Then for any sentences X 
and Y in the language, 

"If X were the case then Y would be the case" is 
true in world w if and only if in the closest world 
to w in which X is true, Y is also true. 
You may well wonder what possible worlds are and which 

possible worlds are supposed to be closer to which others. 
The point is that, for the purpose of giving a logical theory, 
it does not matter what possible worlds are or which of 
them are closest to which others. The worlds and their 
relations can be taken seriously or as a convenient math- 
ematical fiction; in either case, they characterize the set of 
logical truths and they characterize valid inferences. At the 
very least, talk of possible worlds and their proximities 
provides a vivid metaphor that is easy to think about math- 
ematically. At most, it provides the metaphysical under- 
pinnings of our understanding of possibility and necessity. 

Lewis proposed that causal relations are counterfactual 
relations. He proposed that if X and Y are sentences de- 
scribing the occurrence of particular events, then 

X causes Y if and only if X occurs and Y occurs 
and if X had not occurred then Y would not have 
occurred. 

In the semantics of counterfactuals, this becomes 

X causes Y if and only if X is true in the actual 
world and Y is true in the actual world and in 
the closest (to the actual world) possible world in 
which X is not true, Y is not true. 

Return now to Holland's characterization of causal re- 
lations. We can see that his account is straightforwardly 
interpreted within the semantics of counterfactuals and that 
his account is really a specialization of Lewis's. Counter- 
factual analyses of causation, such as those of Lewis and 
of Holland, are naturally compared with alternative ac- 
counts that characterize causal relations in terms of prob- 
ability relations. Such accounts have been provided, in 
various ways, by Suppes (1970), Granger (1969), Reichen- 
bach (1949), Salmon (1980), and Skyrrns (1980). Proba- 
bilistic accounts of causality have the advantage that they 
seem to make it easy to understand how we can have 
knowledge of causal relations, and equally, to ease our 
understanding of the bearing of statistics on causal infer- 
ence. Technical details aside, causal inference becomes a 
statistical estimation problem. They have the disadvantage 
that they do not always accord very well with our intuitive 
judgments about causal relations. 

Counterfactual accounts of causality have the disadvan- 
tage that they appeal to unobservables-to what would be 
true if . . . , and to what goes on in possible worlds we 
will never see. They, therefore, present us with a mystery 
as to how we can know anything about causal relations. 
The mystery surely has a solution, and the general lines of 
the solution must be something like this: We are able to 
infer causal relations because we are able to infer coun- 
terfactual truths, and we are able to infer counterfactual 
truths because we make assumptions that we test against 
one another in rather indirect ways. Holland's article seems 
to me especially valuable in clarifying some of these as- 
sumptions and in explicating their relations. The philo- 
sophical community, unfortunately, has not been very en- 
ergetic in addressing the mystery. 

3. HOLLAND'S RESTRICTIONS 
I am not convinced that the restrictions Holland imposes 

on causal relations are equally justified. Consider, first, the 
requirement that for treatment t to cause individual u to 
have Y, rather than Ye it must have been possible for u to 
have received treatment c instead oft. Holland intends this 
requirement to exclude factors such as genetic constitution 
and attributes determined by genetic constitution (e.g., 
race and gender) from the category of causes. There is no 
treatment that would give one and the same individual a 
genetic structure other than the actual one. There seem to 
be two ideas here. One is  that genetic structure is not an 
event, not a happening but an enduring attribute, and causes 
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must be events. The other is that the identity of organisms 
depends on their genetic structure, so any actual or possible 
individual who differs from me in genetic structure is not 
me. Thus counterfactuals whose antecedents suppose that 
I had a different genetic structure are nonsensical. 

Ifwe insist that only events, not attributes, can be causes, 
then we can still make sense of the talk of causal attributes 
as a facon de parler. We need only find for each individual 
and each attribute the event that was the acquisition of 
that attribute by that individual. In the case of genetic 
structure there is such an event, conception. In many of 
the sociological cases in which attributes are used as causes 
and that Holland rejects as meaningless, there are also 
appropriate events that are the acquisition of the attributes, 
and the talk of attributes as causes can, therefore, be in- 
terpreted as a harmless convenience of speech. I cannot 
agree that "The causal model literature has not been care- 
ful in separating meaningful and meaningless causal state- 
ments and path diagrams" (p. 958). There is little need for 
this sort of care. 

We can identify persons across at least some alterations 
in genetic structure. Down's syndrome is caused by a tri- 
somy-a bit of extra genetic material attached to a chro- 
mosome pair. If that extra bit of material were removed 
from the zygote, without damaging viability, the zygote 
would develop into a person-the very same person I should 
say-without Down's syndrome. Even when one cannot 
identify persons across changes in genetic structure, there 
may still be correspondences that make counterfactuals 
intelligible. My parents tell me that if I had been a girl, I 
would have been named Olga. I believe what they tell me, 
and I think they mean more by it than that their intent was 
to name their first-born "Olga" if their first-born was fe- 
male. (I believe this because I believe they did things like 
the following: referring to the creature in my mother's 
uterus, they said, "If it's a girl, we will call her Olga." The 
reference was not just to whatever person should be their 
first-born, but, as it turns out, to me, and the antecedent 
of the conditional is contrary to fact.) I can imagine a 
possible world in which I do not exist, but a female coun- 
terpart of me does. In that world she is conceived on the 
day I was conceived in this world, her parents in that world 
are mine in this, and her name is Olga. If counterparts are 
conceivable-and why not?-then counterfactuals that vi- 
olate identity conditions are intelligible, and if counterfac- 
tuals are intelligible, then causal relations are as well. 

Holland's second restriction is that the treatment that is 
to be called a cause must be applied to the very individual 
that has the variable value that is called the effect. I see no 
clear motivation for this restriction, and it certainly does 
not agree with our causal judgments and knowledge. The 
Big Bang caused the cosmological background radiation. 
A parent's acquisition of syphilis can cause a child's (con- 
genital) syphilis, and so forth. Nothing in the counterfac- 

tual analysis of causation requires such a restriction, and I 
am rather at a loss to find a motive for its introduction. 

I am tempted to think that Holland's third restriction, 
which demands that a cause always be relative to a specific 
alternative, is an improvement on the bare counterfactual 
account of causal relations. The reason is this: My Uncle 
Schlomo smoked two packs of cigarettes a day, and I am 
firmly convinced that smoking two packs of cigarettes a 
day caused him to get lung cancer. But it may not be true 
that in the closest possible world in which Uncle Schlomo 
did not smoke two packs a day, he did not contract cancer. 
Reflecting on Schlomo's addictive personality, and his gen- 
eral weakness of will, it may well be that the closest possible 
world in which Schlomo did not smoke two packs of cig- 
arettes a day is a world in which he smoked three packs a 
day. I can reconcile this reflection with the counterfactual 
analysis of causality by supposing, with Holland, that 
"smoking two packs of cigarettes a day caused him to get 
lung cancer" is elliptical speech, and what is meant, but 
not said, is that smoking two packs of cigarettes a day, 
rather than not smoking at all, caused Schlomo to contract 
lung cancer. 

4. CONCLUSION 
Probability may have begun with games of chance, but 

one of the principal goals of statistics has always been the 
determination of causal relations from both experimental 
and nonexperimental data. I applaud Holland's willingness 
to try to make the links a little clearer, and I even agree 
in the main with what I take to be his understanding of 
causal relations. I applaud as well his efforts to connect 
philosophy and statistics. Statistics runs with a lot of phi- 
losophy, too much of it tacit, and bad philosophy is best 
avoided by explicitness. I would only caution against 
branding discourse that does not agree with a philosophical 
account as "meaningless." People talk as they will, and if 
they talk in a way that does not fit some piece of philo- 
sophical analysis and seem to understand one another well 
enough when they do, then there is something going on 
that the analysis has not caught. That is not a failing of the 
speakers. It is, if anything, a failing of we who philoso- 
phize, even if we philosophize with statistics. 
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Comment 
CLIVE GRANGER* 

If causality can be equated with some measurable quan- 
tity, then statisticians should be able to devise tests for 
causation. I believe this to be an important topic but it is 
one that statisticians have been rather unhelpful about, 
even negligent, in the past. Only a few statisticians have 
attempted to discuss this difficult field, and thus I welcome 
Holland's article as a useful further contribution. 

To appreciate his work it is important to consider first a 
variety of causal-type questions. If one looks at units of a 
population and asks why one unit has a different value of 
some variable than another, this is a cross-sectional ques- 
tion. An example is when one tries to explain why one 
household spends more on electricity, say, than does an- 
other household. Many causality questions, however, are 
of quite a different nature, such as asking why electricity 
demand has fallen this year or why crime rates have in- 
creased. Here, one is asking causal questions about data 
that are a group of time series. In cross-sectional causation 
one is asking why a particular unit is placed in a certain 
part of the distribution for the variable of interest. In tem- 
poral causality one is asking why parameters of that dis- 
tribution have changed through time. The two types are 
very different in nature and probably require different def- 
initions and methods of analysis. 

Holland's article deals just with cross-sectional causal 
questions, as is clear from the discussion of association in 
Section 2 and the causal model in Section 3. The use of 
experiments to illuminate statistical questions have a ven- 
erable past and an experimental viewpoint seems to be an 
entirely sensible one for consideration of cross-sectional 
causation. I found Holland's discussion in Section 3 very 
helpful and largely convincing for the particular class of 
questions being asked. Of course, the experiment actually 
has to take place for the analysis; hypothetical experiments 
will not be relevant. According to this article, it is also 
required that the treatment variable actually can be con- 
trolled for all units of the population. It follows that one 
cannot tackle questions such as whether race or sex affects 
income or crime rates. Thus many causal questions cannot 
be tackled within this framework, such as most of those 
arising in history, economics, sociology, meteorology, 
oceanology, political science, anthropology, or law. This 
is, of course, a serious limitation. Examples of topical im- 
portance are the questions of whether pornography causes 
changes in rape rates and whether the death sentence causes 
decreases in murder rates. 

There are some very important advantages of trying to 
analyze causality by experimentation. One can hold con- 
stant, or at least potentially control, many other variables 
that otherwise could be disturbing so that it is not necessary 
to condition on these variables during the analysis. Further, 
one does know which is the treatment variable and which 
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is the experiment's outcome variable. This is not always 
true in nonexperimental situations-for example, does crime 
cause poverty or does poverty cause crime? It might also 
be noted that the value of the treatment variable-the 
cause-is determined before the experiment starts, and 
thus before the output variable is observed, and this will 
be known in an experiment. There are also difficulties with 
experiments, however. Human subjects may behave dif- 
ferently in experimental situations than in the real world, 
making findings not easily transferable and so of limited 
value. Further, some "irrelevant" variables may be con- 
trolled and disturb the actual causal relationship. For ex- 
ample, when studying the effects of a price raise on con- 
sumption, if the hours worked by consumers and hence 
their incomes are kept constant, the wrong causal impli- 
cation may be reached. One also cannot ask questions 
about two-way causation, such as poverty causing crime 
and crime causing poverty. 

I am rather surprised that Holland concentrates his at- 
tention on the differences between the two means of Y, 
and Yc, whereas other differences in the distributions of 
these two variables, such as variances, could be very im- 
portant to someone reaching a decision on the basis of the 
experiment. After all, in decision making under uncer- 
tainty, risk is as important as expected return. 

My own particular interest is in temporal causality. I 
think that necessary conditions for a cause are that it occurs 
before the effect and contains unique information about 
it. From these ideas, it follows that knowing the cause helps 
forecast many aspects of the effect, and tests can be based 
on this simple idea. I do not see that the experimental 
context contradicts these ideas. I have also tried to em- 
phasize that the purpose of causal analysis, including sta- 
tistical analysis, is to try to change people's "degrees of 
belief," which might be conveniently summarized as a 
probability that a suggested causal relationship is true. These 
beliefs are required for decision making by economic agents. 
These views are expanded in two papers: Granger (1980, 
1985). 

The question obviously arises whether or not the exper- 
imental framework used here is also relevant for testing 
temporal causality. We may think of two types of experi- 
mental units-those with memory and those without. Ex- 
amples of units without memory would be physical objects 
and possibly land or lower animals, the classical units used 
in experimental work. Certainly human subjects will have 
memory, as will many animals. If a unit has memory, it 
will be very difficult to devise a time sequence of experi- 
ments obeying Holland's requirements to test some theory 
about the effects of a price change or income level on 
consumption, say, because the idea of potentially being 
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able to place every unit under every value of the controlled 
variable at every moment of time becomes less plausible. 
We are back to not being able to relate race or sex to 
income. Because of the memory, it seems that all such 
experiments become strictly impossible, as what happened 
in the past will potentially affect the outcome of the present 
experiment. It seems to me that most of the solutions to 
what Holland calls the "Fundamental Problem of Causal 
Inference" will no longer work in this case, including the 
"statistical solution," without conditioning on the past. I 

am thus unclear that the experimental model is even the- 
oretically helpful for temporal causality in the behavioral 
sciences. If one does condition on the past, the statistical 
solution may be relevant, but the basis for the inference 
will then be quite different from that proposed here. 
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Rejoinder 
PAUL W. HOLLAND 

I thank all of the discussants for their very thoughtful 
comments. Not surprisingly, I agree more with the views 
expressed by Cox and Rubin than with those of Glymour 
and Granger, but each discussant makes important points 
that expand and illuminate issues that arise in the article. 
Space does not permit a response to every point men- 
tioned, and the more critical comments of Glymour and 
Granger tend to be balanced by the comments of Cox and 
Rubin. Hence I will restrict my rejoinder to those issues 
that I feel need emphasis or to which I feel I can add a 
useful point of view. 

In reflecting upon the discussants' remarks I realized that 
nowhere in the article, or elsewhere, is there a purely math- 
ematical description of Rubin's model. Such a formulation 
ought to help separate the model itself from its applications. 
For this reason I will begin my rejoinder with a brief, 
mathematical statement of Rubin's model and its interpre- 
tation in terms of my article. Then I will address some of 
the issues raised by each discussant. 

1. A MATHEMATICAL STATEMENT OF 
RUBIN'S MODEL 

In its simplest form, stripped of all of the interpretative 
language, Rubin's model is a quadruple, R = (U, K, Y, 
S), in which U and K are sets, Y is a real-valued function 
defined on U x K, and S is a mapping from U to K. In 
the language of the article the meaning of the components 
of R is as follows. U is the population of units, and K is a 
set of labels or descriptions of the various causes or treat- 
ments under consideration. For any u â U and k â K, 
Y(u, k) is the value of the response that would be measured 
on u if u were exposed to cause k. The value of S(u) is 
the cause or treatment to which u is actually exposed prior 
to the measurement of the response. In the article I used 
the equivalent subscript notation, that is, Yk(u) = Y(u, 
k), and I let K = {t, c}. Of course, in general K could 
contain more than two elements. 

In real applications of Rubin's model other measure- 
ments besides the response Y need to be represented. I 

think that all measurements should be regarded as func- 
tions defined on U x K, just as Y is. If Xis such a function, 
then X(u, k) is the value of the X measurement that would 
be made on u if u were exposed to cause k â K. One 
special type of measurement needs mention here. If the 
value of X(u, k) does not depend on which cause k to 
which u is exposed I shall call X an attribute of u; that is, 
X(u, k) = X(u) for all u E U and k â K. Important 
examples of attributes are (a) pre-exposure variables (Sec. 
3) and (b) post-exposure variables that cannot be affected 
by k. Among the measurements that are not attributes I 
include other response variables besides Y and "post-treat- 
ment concomitant variables" (Rosenbaum 1984b). 

The purpose of Rubin's model is to provide a language 
for discussing causation, and this language takes units, causes, 
and responses as primitive notions that are not defined 
further. These three elements, however, are not arbitrary 
and must satisfy the basic property that Y is defined on all 
of U x K. The effect of cause t relative to c is then defined 
in terms of these primitive notions, that is, as Y(u, t) - 
Y(u, c), and the observed respohse on each unit is also 
defined in terms of the elements of R, that is, Ys(u) = 
Y(u, S(u)). 

By taking units, causes, and responses as the primitives 
of his theory and defining effects and observed data in 
terms of them, Rubin's model breaks with an ancient phil- 
osophical tradition that takes "events" or "phenomena" 
as primitives and attempts to define what is meant by one 
event being the cause of another. 

An application of Rubin's model requires an identifi- 
cation of the elements of R with features of a real-world 
problem. What are the units, the causes, the responses? 
How are units actually exposed to the action of the causes? 
Is Y defined on all of U x K? If the identification of the 
elements of the real-world application with those of Rub- 
in's model leads to a faithful representation of the real- 
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world situation by the model, then it becomes a useful 
framework for making statements about cause and effect. 
If the representation is not faithful, then Rubin's model 
does not apply and cannot be used to make causal state- 
ments. The question of the "faithfulness" of a particular 
representation is, in my opinion, one on which people may 
disagree. For example, it is usually easy to make an iden- 
tification of U, K, and Y with units, treatments, and a 
response variable in a randomized experiment, but com- 
plex observational studies can provide cases in which rea- 
sonable people might disagree as to the proper identifi- 
cation of the elements of the model. 

2. RUBIN'S COMMENTS 
What Rubin's SUTVA lacks in mellifluence it more than 

makes up for in utility. I view the SUTVA as a general 
purpose way of checking on the faithfulness of a particular 
specification of Rubin's model as a representation of a real- 
world application. Rubin's comments on SUTVA are il- 
luminating and I would like to add a few of my own. 

One might wonder how Hume's notion of "temporal 
succession" fits into the abstract formulation of Rubin's 
model given earlier, which does not involve time, explic- 
itly. I view temporal succession as a part of the application 
of the model rather than as a part of the model itself. For 
example, the value of Y(u, k) is supposed to depend on u 
and k. For this to happen the exposure of u to k must occur 
prior to the measurement of Y(u, k). This forces temporal 
succession upon us. Under SUTVA the value of Y(u, k) 
depends on (u, k) but does not depend on anything else. 
SUTVA and temporal succession are, therefore, two sides 
of the same coin. As Rubin points out, Fisher's null hy- 
pothesis corresponds to Y(u, k) = Y(u) for all k â K. I 
will point out that unit homogeneity (Sec. 4.2) corresponds 
to the parallel assumption that Y(u, k) = Y(k) for all u 
â U. Both Fisher's null hypothesis and unit homogeneity 
are special cases of SUTVA. 

Rubin is correct in pointing out that I view as meaning- 
less "causal" statements in which the "cause" is an attrib- 
ute of the units. By this I simply mean that causal effects 
are not well defined in such cases, because Y is not defined 
on all of U x K, as I discuss in Section 9. Rubin accepts 
such statements as meaningful in circumstances when they 
can be construed as rejections of Fisher's null hypothesis 
that are made without clear statements as to what c is or 
what Ydu) is. Glymour also objects to my use of the term 
"meaningless" on more general grounds. Rubin and Gly- 
mour may be right, but I would call such statements "causally 
innocuous," since they are of such a general nature as to 
have no useful consequence in the real world. 

Rubin's analysis of Neyman's null hypothesis is illustra- 
tive of the value of Rubin's model. By using the SUTVA, 
Rubin gives meaning to Neyman's notion of "technical 
errors," which I ignored in my analysis. I ignored technical 
errors because I find their source of probability to be com- 
pletely artificial. For example, Neyman (1935) described 
the source of probability in this way. 
Suppose that we repeat the experiment indefinitely without any change 
in vegetative conditions or of arrangement so that the kth object is always 

tested in plot (i, j ) .  The yields from this plot will form a population, say 
nij(k) and Xij(k) will be defined as the mean of this population. (p. 110) 

In fact, we cannot perform such an experiment over and 
over again, so what did Neyman really intend? I think that 
Rubin's analysis is very neat and that it does give a meaning 
to Neyman's technical errors that is easy to understand and 
that can lead to interesting statistical analyses. 

Nevertheless, I think that the problem Neyman and Fisher 
were addressing does not depend on the existence of tech- 
nical errors and would still be there if SUTVA were sat- 
isfied with only two causes in K (as I assumed). Readers 
will have to judge for themselves which analysis they pre- 
fer, but I encourage Rubin to provide us with a full-blown 
analysis of the Latin square along the lines indicated in his 
discussion, as this may add another interesting chapter to 
this classic problem. 

3, COX'S COMMENTS 
It was a relief to find that Cox agrees with me that 

"certain variables cannot properly be regarded as causes." 
After reading the comments of the other discussants I was 
beginning to wonder if this view, which I regard as perfectly 
obvious, was shared by no one else. 

I think Cox's term intrinsic variable is what I have meant 
by attribute in this rejoinder. Intrinsic variables that are 
"associated with the environment" can be competing, un- 
controlled causes, but I do not believe that they need to 
be treated as such in the analysis of experiments or ob- 
servational studies. After all, rainfall and soil fertility may 
be associated with each other in complicated ways, but it 
is possibly best to regard them as attributes of a given field 
over a given time period. 

Cox raises what I regard as a very important point about 
"unit-treatment additivity" or, as I prefer to call it, the 
assumption of constant effect (Sec. 4.4). If there are no 
other measured variables besides Y, then it is impossible 
to falsify the constant effect assumption with the data in 
hand. This is true regardless of the sample size. When there 
is an attribute or intrinsic variable X on the scene, then 
we may be able to falsify the constant effect assumption, 
but we cannot falsify the conditional constant effect as- 
sumption that holds conditionally for each value of X, that 
is, 

for all u E U such that X(u) = x. 
It is natural to consider applying Occam's razor to such 
situations and to make the appropriate (conditional) con- 
stant effect assumption the starting point for analyses of 
such data. Such a view makes one sympathetic with Fisher's 
side of the FisherINeyman argument described in Section 
6, in my opinion. 

4. GLYMOUR'S COMMENTS 
I am extremely grateful for Glymour's willingness to 

bring a philosopher's point of view to this discussion. Rubin 
and I have always been aware of the "subjunctive" quality 
of the definition of a causal effect-the "woulds," "ifs," 
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and "weres" of that definition-but I was not aware of the 
relevance of counterfactual conditionals until I read Gly- 
mour's comments on my article. I especially like the notion 
of "possible worlds," since this is what I think the function 
Y is intended to represent. For unit u, Y(u, .) represents 
all of the relevant possible worlds for u. On the other hand, 
S(u) and Y(u, S(u)) described the world that actually exists 
(for observational studies) or the world that will be ob- 
served (for experiments) for unit u. 

I must disagree with Glymour's paraphrasing of my (i.e., 
Rubin's) analysis, however, and with the counterfactual 
analysis of causation of Lewis described by Glymour. I 
believe that there is an unbridgeable gulf between Rubin's 
model and Lewis's analysis. Both wish to give meaning to 
the phrase "A causes B." Lewis does this by interpreting 
"A causes 5" as "A is a cause of 5." Rubin's model in- 
terprets "A causes 5" as "the effect of A is 5."  Rubin 
adopts the notion of an experiment as the fundamental way 
of thinking about causation, studying the effects of known 
causes. Lewis starts with the effect and, like Aristotle, 
seeks to define what it means to be a cause of that effect. 
Can Rubin's model ever define what it means for "A to be 
a cause of B"? I do not think so. In Section 9 , I  convinced 
myself, at least, that statements like "A is a cause of 5" 
are generally false and always depend on our current state 
of knowledge. Notice that once a statement of the form 
"the effect of A is 5" has been experimentally verified it 
does not go away or become false as our knowledge of the 
subject increases. Old, replicable experiments never die, 
they just get reinterpreted. 

I think that Glymour's criticisms are more directed at 
the way in which Rubin's model might be applied than at 
the model itself. For example, he interprets my use of 
"attribute" to refer to such things as "genetic constitution" 
and then points out that we might be willing to "identify 
persons across . . . some alterations in genetic structure." 
Such identification would produce an attribute that is a 
cause. I would see it differently. As technology evolves so 
do the types of causes or treatments that can be applied. 
This is the history of medicine, for example. The units 
must change, of course. In the Down's syndrome example, 
they change from a person to a zygote. What was an at- 
tribute at one level could be manipulated at a different 
level of analysis. 

5. GRANGER'S COMMENTS 
I agree with Granger that statisticians are all too willing 

to shirk the responsibility of addressing issues of causality. 
His work in this area captures aspects of causation that 
many find attractive-compare Sections 5.3 and 8.2. His 
point of view is quite different from that discussed in the 
article. To illustrate this consider Granger's example of a 
cross-sectional causal question, for example, "why does 
one household spend more on electricity . . . than does 
another." This is a comparison of the responses of two 
distinct units, for example, Ys(ul) versus Ys(u2), rather 
than a comparison of the responses of a unit under two 
causes, for example, Y,(ul) versus Yc(ul). I regard the val- 

ues of Ys(ul) and Ys(u2) to be of no causal interest unless 
they shed light on the value of a causal effect such as Y,(ui) 
- Yc(ul). The Fundamental Problem of Causal Inference 
(Sec. 3) must be faced and overcome in some way so that 
the data values Ys(ul) and Ys(u2) can answer causal ques- 
tions. By focusing on the observed data Granger overlooks 
what I regard as real causal questions that must, of neces- 
sity, be couched in terms of information, of which only 
some can be observed. 

I agree with Granger that experiments are not always 
possible to do in many branches of science and that even 
when they are, they may not actually answer the questions 
of interest-note Cox's fertilizerlbird example in this re- 
gard. I disagree, however, with the implication that the 
experimental (i.e., Rubin's) model tells us nothing about 
nonexperimental causal research. In my opinion, there is 
no difference in the conceptual framework that underlies 
both experiments and observational studies-Rubin's model 
is such a framework. In observational studies we know less 
about the situation than we do in experimental studies and 
this lack of information simply serves to make causal in- 
ferences from observational studies more speculative than 
they are in experiments. 

Granger expresses the view that the experimental model 
is not helpful in problems of "temporal causality," which 
he defines as "causal questions about data that are a group 
of time series." The idea that Rubin's model is somehow 
incapable of accommodating time-series data is mislead- 
ing. There is no reason why the response Y cannot be a 
function of time rather than simply a real number. Thus 
Y(u, k, a )  is the value of the response that would be mea- 
sured at time a on unit u if u were exposed to k. The 
observed data are Y(u, S(u), a )  for all relevant a values. 
Causal effects are more complex than before, since they 
now involve comparisons of functions, that is, Y(u, t, a )  

and Y(u, c, a ) .  This might be done with functionals that 
associate single numbers with Y(u, t, a ) .  More complicated 
issues arise if the causes of interest are themelves functions 
of time; that is, K is a set of functions and k(a) â K 
describes the "level" of a cause at time a .  These added 
complexities have not been analyzed carefully as far as I 
know and ought to be pursued to clarify the problem of 
causal inference in a time-series setting. Careful attention 
to Hume's "temporal succession" is critical in such settings. 

Finally, I must strongly disagree with Granger's (and I 
believe Glymour's) view that, for example, questions such 
as "race . . . affects . . . crime rates" and "the death sen- 
tence cause(s) decreases in murder rates" are on the same 
causal footing. In the former, "race" cannot be manipu- 
lated, whereas in the latter "the death sentence" is ma- 
nipulated by governors and legislators all the time. The 
former is an associational statement that is not uninflam- 
matory, and the latter is a causal statement of great public 
policy interest-regardless of how well or poorly it may 
have been studied by enthusiastic regression modelers. 
Granger's theory of temporal causality as expressed in Sec- 
tion 8.2 and in his comments contains, in my view, too 
generous a definition of causality. I find it, at bottom, 
indistinguishable from association. 


