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Observational Studies

1.1 What Are Observational Studies?

William G. Cochran first presented "observational studies" as a topic de-
fined by principles and methods of statistics. Cochran had been an au-
thor of the 1964 United States Surgeon General's Advisory Committee
Report, Smoking and Health, which reviewed a vast literature and con-
cluded: "Cigarette smoking is causally related to lung cancer in men; the
magnitude of the effect of cigarette smoking far outweighs all other factors.
The data for women, though less extensive, point in the same direction
(p. 37)." Though there had been some experiments confined to laboratory
animals, the direct evidence linking smoking with human health came from
observational or nonexperimental studies.
In a later review, Cochran (1965) defined an observational study as an

empiric investigation in which:

. .. the objective is to elucidate cause-and-effect relationships
[in which] it is not feasible to use controlled experimen-

tation, in the sense of being able to impose the procedures or
treatments whose effects it is desired to discover, or to assign
subjects at random to different procedures.

Features of this definition deserve emphasis. An observational study con-
cerns treatments, interventions, or policies and the effects they cause, and
in this respect it resembles an experiment. A study without a treatment
is neither an experiment nor an observational study. Most public opinion
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polls, most forecasting efforts, most studies of fairness and discrimination,
and many other important empirical studies are neither experiments nor
observational studies.
In an experiment, the assignment of treatments to subjects is controlled

by the experimenter, who ensures that subjects receiving different treat-
ments are comparable. In an observational study, this control is absent for
one of several reasons. It may be that the treatment, perhaps cigarette
smoking or radon gas, is harmful and cannot be given to human subjects
for experimental purposes. Or the treatment may be controlled by a politi-
cal process that, perhaps quite appropriately, will not yield control merely
for an experiment, as is true of much of macroeconomic and fiscal policy.
Or the treatment may be beyond the legal reach of experimental manip-
ulation even by a government, as is true of many management decisions
in a private economy. Or experimental subjects may have such strong at-
tachments to particular treatments that they refuse to cede control to an
experimenter, as is sometimes true in areas ranging from diet and exercise
to bilingual education. In each case, the investigator does not control the
assignment of treatments and cannot ensure that similar subjects receive
different treatments.

1.2 Some Observational Studies

It is encouraging to recall cases, such as Smoking and Health, in which
observational studies established important truths, but an understanding of
the key issues in observational studies begins elsewhere. Observational data
have often led competent honest scientists to false and harmful conclusions,
as was the case with Vitamin C as a treatment for advanced cancer.

Vitamin C and Treatment of Advanced Cancer: An
Observational Study and an Experiment Compared
In 1976, in their article in the Proceedings of the National Academy of
Sciences, Cameron and Pauling presented observational data concerning l
the use of vitamin C as a treatment for advanced cancer. They gave vitamin
C to 100 patients believed to be terminally ill from advanced cancer and
studied subsequent survival.
For each such patient, 10 historical controls were selected of the same

age and gender, the same site of primary cancer, and the same histological
tumor type. This method of selecting controls is called matched sampling-
it consists of choosing controls one at a time to be similar to individual
treated subjects in terms of characteristics measured prior to treatment.
Used effectively, matched sampling often creates treated and control groups
that are comparable in terms of the variables used in matching, though the
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groups may still differ in other ways, including ways that were not mea-
sured. Cameron and Pauling (1976, p. 3685) write: "Even though no formal
process of randomization was carried out in the selection of our two groups,
we believe that they come close to representing random subpopulations of
the population of terminal cancer patients in the Vale of Leven Hospital."
In a moment, we shall see whether this is so.
Patients receiving vitamin C were compared to controls in terms of time

from "untreatability by standard therapies" to death. Cameron and Paul-
ing found that, as a group, patients receiving vitamin C survived about
four times longer than the controls. The difference was highly significant
ina conventional statistical test, p-value < 0.0001, and so could not be at-
tributed to "chance." Cameron and Pauling "conclude that there is strong
evidence that treatment... [with vitamin C] ... increases the survival
time."
This study created interest in vitamin C as a treatment. In response,

the Mayo Clinic (Moertel et al., 1985) conducted a careful randomized
controlled experiment comparing vitamin C to placebo for patients with
advanced cancer of the colon and rectum. In a randomized eXperiment,
subjects are assigned to treatment or control on the basis of a chance
mechanism, typically a random number generator, so it is only luck that
determines who receives the treatment. They found no indication that vi-
tamin C prolonged survival, with the placebo group surviving slightly but
not significantly longer. Today, few scientists claim that vitamin C holds
promise as a treatment for cancer.
What went wrong in Cameron and Pauling's observational study? Why

were their findings so different from those of the randomized experiment?
Could their mistake have been avoided in any way other than by conducting
a true experiment?
Definite answers are not known, and in all likelihood will never be known.

Evidently, the controls used in their observational study, though matched
on several important variables, nonetheless differed from treated patients
in some way that was important to survival.
The obvious difference between the experiment and the observational

study was the random assignment of treatments. In the experiment, a sin-
gle group of patients was divided into a treated and a control group using a
random device. Bad luck could, in principle, make the treated and control
groups differ in important ways, but it is not difficult to quantify the poten-
tial impact of bad luck and to distinguish it from an effect of the treatment.
Common statistical tests and confidence intervals do precisely this. In fact,
this is what it means to say that the difference could not reasonably be due
to "chance." Chapter 2 discusses the link between statistical inference and
random assignment of treatments.
In the observational study, subjects were not assigned to treatment or

control by a random device created by an experimenter. The matched sam-
pling ensured that the two groups were comparable in a few important ways,
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but beyond this, there was little to ensure comparability. If the groups. were
not comparable before treatment, if they differed in important ways, then
the difference in survival might be no more than a reflection of these initial
differences.
It is worse than this. In the observational study, the control group was

formed from records of patients already dead, while the treated patients
were alive at the start of the study. The argument was that the treated
patients were terminally ill, that they would all be dead shortly, so the
recent records of apparently similar patients, now dead, could reasonably be
used to indicate the duration of survival absent treatment with vitamin C.
Nonetheless, when the results were analyzed, some patients given vitamin C
were still alive; that is, their survival times were censored. This might reflect
dramatic effects of vitamin C, but it might instead reflect some imprecision
in judgments about who is terminally ill and how long a patient is likely
to survive, that is, imprecision about the initial prognosis of patients in
the treated group. In contrast, in the control group, one can say with total
confidence, without reservation or caveat, that the prognosis of a patient
already dead is not good. In the experiment, all patients in both treated
and control groups were initially alive.
It is worse still. While death is a relatively unambiguous event, the time

from "untreatability by standard therapies" to death depends also on the
time of "untreatability." In the observational study, treated patients were
judged, at the start of treatment with vitamin C, to be untreatable by
other therapies. For controls, a date of untreatability was determined from
records. It is possible that these two different processes would produce the
same number, but it is by no means certain. In contrast, in the experiment,
the starting date in treated and control groups was defined in the same way
for both groups, simply because the starting date was determined before a
subject was assigned to treatment or control.
What do we conclude from the studies of vitamin C? First, observational

studies and experiments can yield very different conclusions. When this
happens, the experiments tend to be believed. Chapter 2 develops some of
the reasons why this tendency is reasonable. Second, matching and similar
adjustments in observational studies, though often useful, do not ensure
that treated and control groups are comparable in all relevant ways. More
than this, the groups may not be comparable and yet the data we have may
fail to reveal this. This issue is discussed extensively in later chapters. Third,
while a controlled experiment uses randomization and an observational
study does not, experimental control also helps in other ways. Even if we
cannot randomize, we wish to exert as much experimental control as is
possible, for instance, using the same eligibility criteria for treated and
control groups, and the same methods for determining measurements.
Observational studies are typically conducted when experimentation is

not possible. Direct comparisons of experiments and observational studies
are less common, vitamin C for cancer being an exception. Another direct
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comparison occurred in the Salk vaccine for polio, a story that is well told
by Meier (1972). Others are discussed by Chalmers, Block, and Lee (1970),
LaLonde (1986), Fraker and Maynard (1987), Zwick (1991), Friedlander
and Robins (1995), and Dehejia and Wahba (1999).

Smoking and Heart Disease: An Elaborate Theory
Doll and Hill (1966) studied the mortality from heart disease of British
doctors with various smoking behaviors. While dramatic associations are
typically found between smoking and lung cancer, much weaker associa-
tions are found with heart disease. Still, since heart disease is a far more
common cause of death, even modest increases in risk involve large numbers
of deaths.
The first thing Doll and Hill did was to "adjust for age." The old are

at greater risk of heart disease than the young. As a group, the smokers
tended to be somewhat older than the nonsmokers, though of course there
were many young smokers and many old nonsmokers. Compare smokers
and nonsmokers directly, ignoring age, and you compare a somewhat older
group to a somewhat younger group, so you expect a difference in coronary
mortality even if smoking has no effect. In its essence, to "adjust for age"
is to compare smokers and nonsmokers of the same age. Often results at
different ages are combined into a single number called an age-adjusted
mortality rate. Methods of adjustment and their properties are discussed
in Chapters 3 and 10. For now, it suffices to say that differences in Doll
and Hill's age-adjusted mortality rates cannot be attributed to differences
in age, for they were formed by comparing smokers and nonsmokers of the
same age. Adjustments of this sort, for age or other variables, are central
to the analysis of observational data.
The second thing Doll and Hill did was to consider in detail what should

be seen if, in fact, smoking causes coronary disease. Certainly, increased
deaths among smokers are expected, but it is possible to be more specific.
Light smokers should have mortality somewhere between that of nonsmok-
ers and heavy smokers. People who quit smoking should also have risks
between those of nonsmokers and heavy smokers, though it is not clear
what to expect when comparing continuing light smokers to people who
quit heavy smoking.
Why be specific? Why spell out in advance what a treatment effect

should look like? The importance of highly specific theories has a long
history, having been advocated in general by Sir Karl Popper (1959) and
in observational studies by Sir Ronald Fisher, the inventor of randomized
experiments, as quoted by Cochran (1965, §5):

About 20 years ago, when asked in a meeting what can be
done in observational studies to clarify the step from associa-
tion to causation, Sir Ronald Fisher replied: 'Make your theories
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TABLE 1.1. Coronary Mortality in Relation to Smoking.
Heavy Smokers

3.79

Moderate Smokers
2.81

T
Light Smokers

2.72

/

" Nonsmokers
2.12

"
/

Exsmokers
2.76

elaborate.' The reply puzzled me at first, since by Occam's ra-
zor, the advice usually given is to make theories as simple as is
consistent with known data. What Sir Ronald meant, as subse-
quent discussion showed, was that when constructing a causal
hypothesis one should envisage as many different consequences
of its truth as possible, and plan observational studies to dis-
cover whether each of these consequences is found to hold.

. .. this multi-phasic attack is one of the most potent weapons
in observational studies.

Chapters 6 through 9 consider this advice formally and in detail.
Table 1.1 gives Doll and Hill's six age-adjusted mortality rates for death

from coronary disease not associated with any other specific disease. The
rates are deaths per 1000 per year, so the value 3.79 means about 4 deaths
in each 1000 doctors each year. The six groups are nonsmokers, exsmokers,
and light smokers of 1 to 14 cigarettes, moderate smokers of 15 to 24
cigarettes, and heavy smokers of 25 or more cigarettes per day. Doll and \
Hill did not separate exsmokers by the amount they had previously smoked,
though this would have been interesting and would have permitted more
detailed predictions. Again, differences in age do not affect these mortality
rates.
Table 1.1 confirms each expectation. Mortality increases with the quan-

tity smoked. Quitters have lower mortality than heavy smokers but higher
mortality than nonsmokers. Any alternative explanation, any claim that
smoking is not a cause of coronary mortality, would need to explain the
entire pattern in Table 1.1. Alternative explanations are not difficult to
imagine, but the pattern in Table 1.1 restricts their number.
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DES and Vaginal Cancer: Sensitivity to Bias
Cancer of the vagina is a rare condition, particularly in young women. In
1971, Herbst, Ulfelder, and Poskanzer published a report describing eight
cases of vaginal cancer in women aged 15 to 22. They were particularly
interested in the possibility that a drug, diethylstilbestrol or DES, given
to pregnant women, might be a cause of vaginal cancer in their daughters.
Each of the eight cases was matched to four referents, that is, to four women
who did not develop vaginal cancer. These four referents were born within
five days of the birth of the case at the same hospital, and on the same type
of service, ward or private. There were then eight cases of vaginal cancer
and 32 referents, and the study compared the use of DES by their mothers.
This sort of study is called a case-referent study or a case-control study or

a retrospective study, no one terminology being universally accepted. In an
experiment and in many observational studies, treated and control groups
are followed forward in time to see how outcomes develop. In the current
context, this would mean comparing two groups of women, a treated group
whose mothers had received DES and a control group whose mothers had
not. That sort of study is not practical because the outcome, vaginal cancer,
is so rare-the treated and control groups would have to be enormous and
continue for many years to yield eight cases of vaginal cancer. In a case-
referent study, the groups compared are not defined by whether or not
they received the treatment, but rather by whether or not they exhibit the
outcome. The cases are compared to the referents to see if exposure to the
treatment is more common among cases.
In general, the name "case-control" study is not ideal because the word

"control" does not have its usual meaning of a person who did not receive
the treatment. In fact, in most case-referent studies, many referents did
receive the treatment. The name "retrospective" study is not ideal because
there are observational studies in which data on entire treated and con-
trol groups are collected after treatments have been given and outcomes
have appeared, that is, collected retrospectively, and yet the groups being
compared are still treated and untreated groups. See MacMahon and Pugh
(1970, pp. 41-46) for some detailed discussion of this terminology.
So the study compared eight cases of vaginal cancer to 32 matched ref-

erents to see if treatment with diethylstilbestrol was more common among
mothers of the cases, and indeed it was. Among the mothers of the eight
cases, seven had received DES during pregnancy. Among mothers of the 32
referents, none had received DES. The association between vaginal cancer
and DES appears to be almost as strong as a relationship can be, though
of course only eight cases have been observed. If a conventional test de-
signed for use in a randomized experiment is used to compare cases and
referents in terms of the frequency of exposure to DES, the difference is
highly significant. However, experience with the first example, vitamin C
and cancer, suggests caution here.



8 1. Observational Studies

What should be concluded from the strong association observed between
DES and vaginal cancer in eight cases and 32 matched referents? Unlike
the case of vitamin C and cancer, it would be neither practical nor ethical
to follow up with a randomized experiment. Could such a hypothetical
experiment produce very different findings? That possibility can never be
entirely ruled out. Still, it is possible to ask: How severe would the unseen
problems in this study have to be to produce such a strong relationship if
DES did not cause vaginal cancer? How far would the observational study
have to depart from an experiment to produce such a relationship if DES
were harmless? How does the small size of the case group, eight cases,
affect these questions? Chapter 4 provides answers. As it turns out, only
severe unseen problems and hidden biases, only dramatic departures from
an experiment, could produce such a strong association in the absence of an
effect of DES, the small sample size notwithstanding. In other words, this
study is highly insensitive to hidden bias; its conclusions could be altered
by dramatic biases, but not by small ones. This is by no means true of all
observational studies. Chapter 4 concerns general methods for quantifying
the sensitivity of findings to hidden biases, and it discusses the uses and
limitations of sensitivity analyses.

Academic Achievement in Public and Catholic High Schools:
Specific Responses to Specific Criticisms
A current controversy in the United States concerns the effectiveness of
public or state-run schools, particularly as compared to existing privately
operated schools. The 1985 paper by Hoffer, Greely, and Coleman is one
of a series of observational studies of this question. They used data from
the High School and Beyond Study (HSB), which includes a survey of US
high-school students as sophomores with follow-up in their senior year. The
HSB study provided standardized achievement test scores in several areas
in sophomore and senior years, and included follow-up of students who
dropped out of school, so as these things go, it is a rather complete and
attractive source of data. Hoffer, Greely, and Coleman (1985) begin with
a list of six objections made to their earlier studies, which had compared
achievement test scores in public and Catholic schools, concluding that
"... Catholic high schools are more effective than public high schools."
As an illustration, objection #3 states: "Catholic schools seem to have an
effect because they eliminate their disciplinary problems by expelling them
from the school." The idea here is that Catholic schools eliminate difficult
students while the public schools do not, so the students who remain in
Catholic schools would be more likely to perform well even if there were no
difference in the effectiveness of the two types of schools.
Criticism is enormously important to observational studies. The quality

of the criticism offered in a particular field is intimately connected with the
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quality of the studies conducted in that field. Quality is not quantity, nor
is harshness quality. What is scientifically plausible must be distinguished
from what is just logically possible (Gastwirth, Krieger and Rosenbaum
1997). Cochran (1965, §5) argues that the first critic of an observational
study should be its author:

When summarizing the results of a study that shows an asso-
ciation consistent with the causal hypothesis, the investigator
should always list and discuss all alternative explanations of his
results (including different hypotheses and biases in the results)
that occur to him. This advice may sound trite, but in practice
is often neglected.

Criticisms of observational studies are of two kinds, the tangible and the
dismissive, objection #3 being of the tangible kind. A tangible criticism
is a specific and plausible alternative interpretation of the available data;
indeed, a tangible criticism is itself a scientific theory, itself capable of
empirical investigation. Bross (1960) writes:

a critic who objects to a bias in the design or a failure
to control some established factor is, in fact, raising a counter-
hypothesis. . . [and] has the responsibility for showing [it] is
tenable. In doing so, he operates under the same ground rules
as the proponent ... : When a critic has shown that his coun-
terhypothesis is tenable, his job is done, while at this point the
proponent's job is just beginning. A proponent's job is not fin-
ished as long as there is a tenable hypothesis that rivals the one
he asserts.

On the second page of his The Design of Experiments, Fisher (1935)
described dismissive criticism as he argued that a theory of experimental
design is needed:

This type of criticism is usually made by what I might call
a heavyweight authority. Prolonged experience, or at least the
long possession of a scientific reputation, is almost a pre-requisite
for developing successfully this line of attack. Technical details
are seldom in evidence. The authoritative assertion: "His con-
trols are totally inadequate" must have temporarily discred-
ited many a promising line of work; and such an authoritarian
method of judgement must surely continue, human nature be-
ing what it is, so long as theoretical notions of the principles of
experimental design are lacking ....

Dismissive criticism rests on the authority of the critic and is so broad
and vague that its claims be studied empirically. Judging the weight
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of evidence is inseparable from judging the criticisms that have been or can
be raised.
Concerning objection #3, Hoffer, Greely, and Coleman (1985) respond:

".. , the evidence from the HSB data, although indirect, does not support
this objection. Among students who reported that they had been suspended
during their sophomore year, those in the Catholic sector were more likely
to be in the same school as seniors than those in the public sector (63
. percent to 56 percent)." In other words, difficult students, or at any rate
students who were suspended, remained in Catholic school more often, not
less often, than in public schools. This response to objection #3, though
not decisive, does gives one pause.
Successful criticism of an observational study points to ambiguity in evi-

dence or argument, and then points to methods for removing the ambiguity.
Efforts to resolve an ambiguity are sometimes undermined by efforts to win
an argument. Popper (1994, p. 44) writes:

Serious critical discussions are always difficult ... Many par-
ticipants in a rational, that is, a critical, discussion find it par-
ticularly difficult to unlearn what their instincts seem to teach
them (and what they are taught, incidently, by every debating
society): that is, to win. For what they have to learn is that vic-
tory in debate is nothing, while even the slightest clarification
of one's problem---even the smallest contribution made towards
a clearer understanding of one's own position or that of one's
opponent-is a great success. A discussion which you win but
which fails to help you change or to clarify your mind at least
a little should be regarded as a sheer loss.

1.3 Purpose of This Book

Scientific evidence is commonly and properly greeted with objections, skep-
ticism, and doubt. Some objections come from those who simply do not
like the conclusions, but setting aside such unscientific reactions, responsi-
ble scientists are responsibly skeptical. We look for failures of observation,
gaps in reasoning, alternative interpretations. We compare new evidence
with past evidence. This skepticism is itself scrutinized. Skepticism must
be justified, defended. One needs "grounds for doubt," in Wittgenstein's
(1969, §122) phrase. The grounds for doubt are themselves challenged. Ob-
jections bring forth counterobjections and more evidence. As time passes,
arguments on one side or the other become strained, fewer scientists are
willing to offer them, and the arguments on that side come increasingly
from individuals who seem to have some stake in the outcome. In this way,
questions are settled.
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Scientific questions are not settled on a particular date by a single event,
nor are they settled irrevocably. We speak of the weight of evidence. Even-
tually, the weight is such that critics can no longer lift it, or are too weary to
try. Overwhelming evidence is evidence that overwhelms responsible critics.
Experiments are better than observational studies because there are

fewer grounds for doubt. The ideal experiment would leave few grounds
for doubt, and at times this ideal is nearly achieved, particularly in the
laboratory. Experiments often settle questions faster.
Despite this, experiments are not feasible in some settings. At times,

observational studies have produced overwhelming evidence, as compelling
as any in science, but at other times, observational data have misled inves-
tigators to advocate harmful policies or ineffective treatments.
A statistical theory of observational studies is a framework and a set of

tools that provide measures of the weight of evidence. The purpose of this
book is to give an account of statistical principles and methods for the de-
sign and analysis of observational studies. An adequate account must relate
observational studies to controlled experiments, showing how uncertainty
about treatment effects is greater in the absence of randomization. Ana-
lytical adjustments are common in observational studies, and the account
should indicate what adjustments can and cannot do. A large literature
offers many devices to detect hidden biases in observational studies, for
instance, the use of several control groups, and the account must show how
such devices work and when they may be expected to succeed or fail. Even
when it is not possible to reduce or dispel uncertainty, it is possible to
be careful in discussing its magnitude. That is, even when it is not possi-
ble to remove bias through adjustment or to detect bias through careful
design, it is nonetheless possible to give quantitative expression to the mag-
nitude of uncertainties about bias, a technique called sensitivity analysis.
The account must indicate what can and cannot be done with a sensitivity
analysis.

1.4 Bibliographic Notes

Most scientific fields that study human populations conduct observational
studies. Many fields have developed a literature on the design, conduct,
and interpretation of observational studies, often with little reference to
related work in other fields. It is not possible to do justice to these sev-
eral literatures in a short bibliographic note. There follows a short and
incomplete list of fine books that contain substantial general discussions
of the methodology used for observational studies in epidemiology, public
program evaluation, or the social sciences. A shared goal in these diverse
works is evaluation of treatments, exposures, programs, or policies from
nonexperimental data. The list is followed by references cited in Chapter 1.
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2
Randomized Experiments

2.1 Introduction and Example: A Randomized
Clinical Trial

Observational studies and controlled experiments have the same goal, in-
ference about treatment effects, but random assignment of treatments is
present only in experiments. This chapter reviews the role of randomiza-
tion in experiments, and so prepares for discussion of observational studies
in later chapters. A theory of observational studies must have a clear view
of the role of randomization, so it can have an equally clear view of the
consequences of its absence. Sections 2.1 and 2.2 give two examples: a
large controlled clinical trial, and then a small but famous example due to
Sir Ronald Fisher, who is usually credited with the invention of random-
ization, which he called the "reasoned basis for inference" in experiments.
Later sections discuss the meaning of this phrase, that is, the link between
randomization and statistical methods. Most of the material in this chapter
is quite old.

Randomized Trial of Coronary Surgery
The US Veterans Administration (Murphy et al. 1977) conducted a ran-
domized controlled experiment comparing coronary artery bypass surgery
with medical therapy as treatments for coronary artery disease. Bypass
surgery is an attempt to repair the arteries that supply blood to the heart,
arteries that have been narrowed by fatty deposits. In bypass surgery, a
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TABLE 2.1. Base-Line Comparison of Coronary Patients in the Veterans Admin-
istration Randomized Trial.

Medical Surgical
Covariate % %

New York Heart Association
Class II & III 94.2 95.4

History of myocardial
infarction (MI) 59.3 64.0

Definite or possible MI
based on electrocardiogram 36.1 40.5

Duration of chest pain
> 25 months 50.0 51.8

History of hypertension 30.0 27.6
History of congestive
heart failure 8.4 5.2

History of cerebral
vascular episode 3.2 2.1

History of diabetes 12.9 12.2
Cardiothoracic ratio> 0.49 10.4 12.2
Serum cholesterol
> 249 mg/100 ml 31.6 20.6

bypass or bridge is formed around a blockage in a coronary artery. In. con-
trast, medical therapy uses drugs to enhance the flow of blood through
narrowed arteries. The study involved randomly assigning 596 patients at
13 Veterans Administration hospitals, of whom 286 received surgery and
310 received drug treatments. The random assignment of a treatment for
each patient was determined by a central office after the patient had been
admitted into the trial.
Table 2.1 is taken from their study. It compares the medical and surgi-

cal treatment groups in terms of 10 important characteristics of patients
measured at "base-line," that is, prior to the start of treatment. A variable
measured prior to the start of treatment is called a covariate. Similar tables
appear in reports of most clinical trials.
Table 2.1 shows the two groups of patients were similar in many im-

portant ways prior to the start of treatment, so that comparable groups
were being compared. When the percentages for medical and surgical are
compared, the difference is not significant· at the 0.05 level for nine of the
variables in Table 2.1, but is significant for serum cholesterol. This is in
line with what one would expect from 10 significance tests if the only dif-
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ferences were due to chance, that is, due to the choice of random numbers
used in assigning treatments.
For us, Table 2.1 is important for two reasons. First, it is an example

showing that randomization tends to produce relatively comparable or bal-
anced treatment groups in large experiments. The second point is separate
and more important. The 10 covariates in Table 2.1 were not used in as-
signing treatments. There was no deliberate balancing of these variables.
Rather the balance we see was produced by the random assignment, which
made no use of the variables themselves. This gives us some reason to hope
and expect that other variables, not measured, are similarly balanced. In-
deed, as shown shortly, statistical theory supports this expectation. Had the
trial not used random assignment, had it instead assigned patients one at a
time to balance these 10 covariates, then the balance might well have been
better than in Table 2.1, but there would have been no basis for expecting
other unmeasured variables to be similarly balanced.
The VA study compared survival in the two groups three years after

treatment. Survival in the medical group was 87% and in the surgical group
88%, both with a standard error of 2%. The 1% difference in mortality was
not significant. Evidently, when comparable groups of patients received
medical and surgical treatment at the VA hospitals, the outcomes were
quite similar.
The statement that randomization tends to balance covariates is at best

imprecise; taken too literally, it is misleading. For instance, in Table 2.1,
the groups do differ slightly in terms of serum cholesterol. Presumably
there are other variables, not measured, exhibiting imbalances similar to
if not greater than that for serum cholesterol. What is precisely true is
that random assignment of treatments can produce some imbalances by
chance, but common statistical methods, properly used, suffice to address
the uncertainty introduced by these chance imbalances. To this subject, we
now turn.

2.2 The Lady Tasting Tea

."A lady declares that by tasting a cup of tea made with milk she can
discriminate whether the milk or the tea infusion was first added to the
cup," or so begins the second chapter of Sir Ronald Fisher's (1935, 1949)
book The Design of Experiments, which introduced the formal properties
of randomization. This example is part of the tradition of statistics, and in
addition it was well selected by Fisher to illustrate key points. He continues:

Our experiment consists in mixing eight cups of tea, four in
one way and four in the other, and presenting them to the sub-
ject for judgement in a random order. The subject has been
told in advance of what the test will consist, namely that she
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will be asked to taste eight cups, that these shall be four of
each kind, and that they shall be presented to her in a ran-
dom order, that is in an order not determined arbitrarily by
human choice, but by the actual manipulation of the physical
apparatus used in games of chance, cards, dice, roulettes, etc.,
or more expeditiously, from a published collection of random
sampling numbers purporting to give the actual results of such
a manipulation. Her task is to divide the 8 cups into two sets
of 4, agreeing, if possible, with the treatments received.

Fisher then asks what would be expected if the Lady was "without any
faculty of discrimination," that is, if she makes no changes at all in her
judgments in response to changes in the order in which tea and milk are
added to the cups. To change her judgments is to have some faculty of
discrimination, however slight. So suppose for the moment that she cannot
discriminate at all, that she gives the same judgments no matter which
four cups receive milk first. Then it is only by accident or chance that she
correctly identifies the four cups in which milk was added first. Since there
are = 70 possible divisions of the eight cups into two groups of four,
and randomization has ensu.red that these are equally probable, the chance
of this accident is 1/70. In other words, the probability that the random
ordering of the cups will yield perfect agreement with the Lady's fixed
judgments is 1/70. If the Lady correctly classified the cups, this probability,
0.014 = 1/70, is the significance level for testing the null hypothesis that
she is without the ability to discriminate.
Fisher goes on to describe randomization as the "reasoned basis" for

inference and "the physical basis of the validity of the test"; indeed, these
phrases appear in section headings and are clearly important to Fisher. He
explains:

We have now to examine the physical conditions of the ex-
perimental technique needed to justify the assumption that, if
discrimination of the kind under test is absent, the result of the
experiment will be wholly governed by the laws of chance. .. .

It is [not sufficient] to insist that "all the cups must be exactly
alike" in every respect except that to be tested. For this is a
totally impossible requirement in our example, and equally in
all other forms of experimentation . .. .

The element in the experimental procedure which contains
the essential safeguard is that the two modifications of the test
beverage are to be prepared "in random order." This, in fact, is
the only point in the experimental procedure in which the laws
of chance, which are to be in exclusive control of our frequency
distribution, have been explicitly introduced.
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Fisher discusses this example for 15 pages, though its formal aspects are
elementary and occupy only a part of a paragraph. He is determined to
establish that randomization has justified or grounded a particular infer-
ence, fonned its "reasoned basis," a basis that would be lacking had the
same pattern of responses, the same data, been observed in the absence of
randomization.
The example serves Fisher's purpose well. The Lady is not a sample

from a population of Ladies, and even if one could imagine that she was,
there is but one Lady in the experiment and the hypothesis concerns her
alone. Her eight judgments are not independent observations, not least
because the rules require a split into four and four. Later cups differ from
earlier ones, for by cup number five, the Lady has surely tasted one with
milk first and one with tea first. There is no way to construe, or perhaps
misconstrue, the data from this experiment as a sample from a population,
or as a series of independent and identical replicates. And yet, Fisher's
inference is justified, because the only probability distribution used in the
inference is the one created by the experimenter.
What are the key elements in Fisher's argument? First, experiments do

not require, indeed cannot reasonably require, that experimental units be
homogeneous, without variability in their responses. Homogeneous experi-
mental units are not a realistic description of factory operations, hospital
patients, agricultural fields. Second, experiments do not require, indeed,
cannot reasonably require, that experimental units be a random sample
from a population of unit;>. Random samples of experimental units are not
the reality of the industrial laboratory, the clinical trial, or the agricultural
experiment. Third, for valid inferences about the effects of a treatment on
the units included in an experiment, it is sufficient to require that treat-
ments be allocated at random to experimental units-these units may be
both heterogeneous in their responses and not a sample from a population.
Fourth, probability enters the experiment only through the random assign-
ment of treatments, a process controlled by the experimenter. A quantity
that is· not affected by the random assignment of treatments is a fixed
quantity describing the units in the experiment.
The next section repeats Fisher's argument in more general terms.

2.3 Randomized Experiments

2.3.1 Units and Treatment Assignments
There are N units available for experimentation. A unit is an opportunity to
apply or withhold the treatment. Often, a unit is a person who will receive
either the treatment or the control as determined by the experimenter.
However, it may happen that it is not possible to assign a treatment to a
single person, so a group of people form a single unit, perhaps all children
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in a particular classroom or school. On the other hand, a single person may
present several opportunities to apply different treatments, in which case
each opportunity is a unit; see Problem 2. For instance, in §2.2, the one
Lady yielded eight units.
The N units are divided into 5 strata or subclasses on the basis of

covariates, that is, on the basis of characteristics measured prior to the as-
signment of treatments. The stratum to which a unit belongs is not affected
by the treatment, since the strata are formed prior to treatment. There are
n s units in stratum s for s = 1, ... ,5, so N = L n s .
Write Zsi = 1 if the ith unit in stratum s receives the treatment and

write Zsi = 0 if this unit receives the control. Write m s for the number of
treated units in stratum s, so m s = and O:S ms :S ns . Finally,
write Z for the N-dimensional column vector containing the Zsi for all
units in the lexical order; that is,

Z=

Zll
ZI2

ZI,n!
Z2I

ZS,ns

[::J [

Zsl ]
where Zs = :

Zs,n.

(2.1)

This notation covers several common situations. If no covariates are used
to divide the units, then there is a single stratum containing all units, so
5 = 1. If ns = 2 and m s = 1 for s = 1, ... ,5, then there are 5 pairs of units
matched on the basis of covariates, each pair containing one treated unit
and one control. The situation in which n s 2 and m s = 1 for s = 1, ... ,S
is called matching with multiple controls. In this case there are 5 matched
sets, each containing one treated unit and one or more controls.
The case of a single stratum, that is 5 = 1, is sufficiently common and

important to justify slight modifications in notation. When there is only a
single stratum the subscript s is dropped, so Zi is written in place of Zli'
The same convention applies to other quantities that have subscripts sand
i.

2.3.2 Several Methods of Assigning Treatments at Random
In a randomized experiment, the experimenter determines the assignment
of treatments to units, that is the value of Z, using a known random mech-
anism such as a table of random numbers. To say that the mechanism is
known is to say that the distribution of the random variable Z is known
because it was created by the experimenter. One requirement is placed
on this random mechanism, namely, that, before treatments are assigned,
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every unit has a nonzero chance of receiving both the treatment and the
control, or formally that 0 < prob(Zsi = 1) < 1 for s = 1, ... ,S and
i = 1, ... ,ns . Write no for the set containing all possible values of Z, that
is, all values of Z which are given nonzero probability by the mechanism.
In practice, many different random mechanisms have been used to deter-

mine Z. The simplest assigns treatments independently to different units,
taking prob(Zsi = 1) = 1/2 for all s, i. This method was used in the Veter-
ans Administration experiment on coronary artery surgery in §2.1. In this
case, no is the set containing 2N possible values of Z, namely, all N-tuples
of zeros and ones, and every assignment in no has the same probability;
that is, prob(Z = z) = 1/2N for all z E no. The number of elements in
a set A is written IAI, so in this case Inol = 2N . This mechanism has the
peculiar property that there is a nonzero probability that all units will be
assigned to the same treatment, though this probability is extremely small
when N is moderately large. From a practical point of view, a more impor-
tant problem with this mechanism arises when S is fairly large compared
to N. In this case, the mechanism may give a high probability to the set
of treatment assignments in which all units in some stratum receive the
same treatment. If the strata were types of patients in a clinical trial, this
would mean that all patients of some type received the same treatment. If
the strata were schools in an educational experiment, it would mean that
all children in some school received the same treatment. Other assignment
mechanisms avoid this possibility.
The most commonly used assignment mechanism fixes the number m s of

treated subjects in stratum s. In other words, the only assignments Z with
nonzero probability are those with m s treated subjects in stratum s for
s = 1, ... ,S. If m s is chosen sensibly, this avoids the problem mentioned
in the previous paragraph. For instance, if n s is required to be even and
ms is required to equal ns /2 for each s, then half the units in each stratum
receive the treatment and half receive the control, so the final treated and
control groups are exactly balanced in the sense that they contain the same
number of units from each stratum.
When ms is fixed in this way, let n be th[e jcontaining the K =

(;;:) possible treatment assignments z = in which Zs is an n s -

tuple with m s ones and n s -ms zeros for s = 1, ... , S. In the most common
assignment mechanism, each of these K possible assignments is given the
same probability, prob(Z = z) = 1/K all zEn. This type of randomized
experiment, with equal probabilities and fixed m s , will be called a uniform
randomized experiment. When there is but a r:;ingle stratum, S = 1, it has
traditionally been called a completely randomized experiment, but when
there are two or more strata, S ? 2, it has been called a randomized
block experiment. If the strata each contain two units, n s = 2, and one
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receives the treatment, m s = 1, then it has been called a paired randomized
experiment.
As a small illustration, consider a uniform randomized experiment with

two strata, S = 2, four units in the first stratum, nl = 4, and two in the
second, n2 = 2, and N = nl +n2 = 6 units in total. Half of the units in each
stratum receive the treatment, so ml = 2 and m2 = 1. There are K = 12
possible treatment assignments z = (Zll,Z12,Z13,Z14,Z21,Z22)T contained
in the set n, and each has probability 1/12. So n is the following set of
K = 12 vectors z of dimension N = 6 with binary coordinates such that
2 = Zll + Z12 + Z13 + Z14 and 1 = Z21 + Z22·

1 1 1 a a a
1 a a 1 1 a
a 1 a 1 a 1
a a 1 a 1 1
1 1 1 1 1 1
a a a a a a

L

1 1 1 a a a
1 a a 1 1 a
a 1 a 1 a 1
0 a 1 a 1 1
a a a a a a
1 1 1 1 1 1

The following proposition is often useful. It says that in a uniform ran-
domized experiment, the assignments in different strata are independent of
each other. For the elementary proof, see Problem 3.

Proposition 1 In a uniform randomized experiment, the Zl, ... , Zs are
mutually independent, and prob(Zs = zs) = 1/C:l:) for each ns-tuple Zs
containing m s ones and n s - m s zeros.

The uniform randomized designs are by far the most common random-
ized experiments involving two treatments, but others are also used, par-
ticularly in clinical trials. It is useful to mention one of these methods of
randomization to underscore the point that randomized experiments need
not give every treatment assignment z E no the same probability. A dis-
tinguishing feature of many clinical trials is that the units are patients
who arrive for treatment over a period of months or years. As a result, the
number n s of people who will fall in stratums will not be known at the
start of the experiment, so a randomized block experiment is not possi-
ble. Efron (1971) proposed the following method. Fix a probability p with
1/2 < p < 1. When the ith patient belonging to stratum 8 first arrives,
calculate a current measure of imbalance in stratum 8, IMBALsi , defined
to be the number of patients so far assigned to treatment in this stra-
tum minus the number so far assigned to control. It is easy to check that
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IMBALsi = L: (2Zsj - 1). If IMBALsi = 0, assign the new patient to
treatment or control each with probability 1/2. If IMBALsi < 0, so there
are too few treated patients in this stratum, then assign the new patient
to treatment with probability p and to control with probability 1 - p. If
IMBALsi > 0, so there are too many treated patients, then assign the new
patient to treatment with probability 1 - p and to control with probability
p. Efron examines various aspects of this method. In particular, he shows
that it is much better than independent assignment in producing balanced
treated and control groups, that is, treated and control groups with similar
numbers of patients from each stratum. He also examines potential biases
due to the experimenter's knowledge of IMBALsi ' Zelen (1974) surveys a
number of related methods with similar objectives.

2.4 Testing the Hypothesis of No Treatment Effect

2·4.1 The Distribution of a Test Statistic VVhen the
Treatment Is Without Effect

In the theory of experimental design, a special place is given to the test
of the hypothesis that the treatment is entirely without effect. The reason
is that, in a randomized experiment, this test may be performed virtually
without assumptions of any kind, that is, relying just on the random as-
signment of treatments. Fisher discussed the Lady and her tea with such
care to demonstrate this. Other activities, such as estimating treatment
effects or building confidence intervals, do require some assumptions, often
innocuous assumptions, but assumptions nonetheless. The contribution of
randomization to formal inference is most clear when expressed in terms of
the test of no effect. Does this mean that such tests are of greater practi-
cal importance than point or interval estimates? Certainly not. It is simply
that the theory of such tests is less cluttered, and so it sets randomized and
nonrandomized studies in sharper contrast. The important point is that,
in the absence of difficulties such as noncompliance or loss to follow-up, as-
sumptions play a minor role in randomized experiments, and no role at all
in randomization tests of the hypothesis of no effect. In contrast, inference
in a nonrandomized experiment requires assumptions that are not at all
innocuous. So let us follow Fisher and develop this point with care.
Each unit exhibits a response that is observed some time after treat-

ment. To say that the treatment has no effect on this response is to say
that each unit would exhibit the same value of the response whether as-
signed to treatment or control. If the treatment has no effect on a patient's
survival, then the patient would live the same number of months under
treatment or under control. This is the definition of "no effect." If chang-
ing the treatment assigned to a unit changed that unit's response, then
certainly the treatment has at least some effect. If a patient would live one
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more month under treatment than under control, then the treatment has
some effect on that patient.
In the traditional development of randomization inference, chance and

probability enter only through the random assignment of treatments, that
is, through the known mechanism that selects the treatment assignment Z
from n. The only random quantities are Z and quantities that depend on
Z. When the treatment is without effect, the response of a unit is fixed,
in the sense that this response would not change if a different treatment
assignment Z were selected from n. Again, this is simply what it means
for a treatment to be without effect. When testing the null hypothesis of
no effect, the response of the ith unit in stratum s is written Tsi and the
N -tuple of responses for all N units is written r. The lowercase notation for
Tsi emphasizes that, under the null hypothesis, Tsi is a fixed quantity and
not a random variable. Later on, when discussing treatments with effects,
a different notation is needed.
A test statistic t(Z, r) is a quantity computed from the treatment as-

signment Z and the response r. For instance, the treated-minus-control
difference in sample means is the test statistic

ZTr (l-Z)Tr
t(Z, r) = ZTl - (1 _ Z)T1' (2.2)

where 1 is an N-tuple of Is. Other statistics are discussed shortly.
Given any test statistic t(Z, r), the task is to compute a significance

level for a test that rejects the null hypothesis of no treatment effect when
t(Z,r) is large. More precisely:

(i) The null hypotheses of no effect is tentatively assumed to hold, so r is
fixed.

(ii) A treatment assignment Z has been selected from n using a known
random mechanism.

(iii) The observed value, say T, of the test statistic t(Z,r) has been calcu-
lated.

(iv) We seek the probability of a value of the test statistic as large or larger
than that observed if the null hypothesis were true.

The significance level is simply the sum of the randomization probabilities
of assignments zEn that lead to values of t(z, r) greater than or equal to
the observed value T, namely,

prob{t(Z,r) T} = r) T] . prob(Z = z), (2.3)
zEn

where [event]
if event occurs,

(2.4)=
otherwise,
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and prob(Z = z) is determined by the known random mechanism that as-
signed treatments. This is a direct calculation, though not always a straight-
forward one when 0 is extremely large.
In the case of a uniform randomized experiment, there is a simpler ex-

pression for the significance level (2.3) since prob(Z = z) = 1/K = 1/101.
It is the proportion of treatment assignments z E 0 giving values of the
test statistic t(z, r) greater than or equal to T, namely,

prob{t(Z, r) :;:: T} = I{z EO: tt' r) :;:: T}i.

2.4.2 More Tea

(2.5)

To illustrate, consider again Fisher's example of the Lady who tastes N = 8
cups of tea, all in a single stratum, so S = 1. A treatment assignment is
an 8-tuple containing four Is and four as. For instance, the assignment
Z = (1,0,0,1,1, 0, 0, l)T would signify that cups 1, 4, 5, and 8 had milk
added first and the other cups had tea added first. The set of treatment
assignments n contains all possible 8-tuples containing four Is and four Os,
so 0 contains 101 = K = m= 70 such 8-tuples. The actual assignment
was selected at fandom in the sense that prob(Z = z) = 1/K = 1/70 for
all z E O. Notice that zTI = 4 for all z E O.
The Lady's response for cup i is either ri = 1 signifying that she classifies

this cup as milk first or ri = °signifying that she classifies it as tea first.
Then r = (rl, ... , rs)T. Recall that she must classify exactly four cups as
milk first, so 1Tr = 4. The test statistic is the number of cups correctly
identified, and this is written formally as t(Z,r) = ZTr+ (1- Z)T(1-r) =
2ZTr, where the second equality follows from 1TI = 8, ZTI = 4, and ITr =
4. To make this illustration concrete, suppose that r = (1,1, 0, a, 0,1, I, a),
so the Lady classifies the first, second, sixth, and seventh cups as milk first.
To say that the treatment has no effect is to say that she would give this
classification no matter how milk was added to the cups, that is, no matter
how treatments were assigned to cups. If changing the cups to which milk
is added first changes her responses, then she is discerning something, and
the treatment has some effect, however slight or erratic.
There is only one treatment assignment z E 0 leading to perfect agree-

ment with the Lady's responses, namely, z = (1,1,0,0,0,1,1,0), so if
t(Z, r) = 8 the significance level (2.5) is prob{t(Z, r) :;:: 8} = 1/70. This
says that the chance of perfect agreement by accident is 1/70 = 0.014, a
small chance. In other words, if the treatment is without effect, the chance
that a random assignment of treatments will just happen to produce perfect
agreement is 1/70.
It is not possible to have seven agreements since to err once is to err twice.

How many assignments z EO lead to exactly t(Z, r) = six agreements? One
such assignment with six agreements is z = (1,0,1,0,0,1,1,0). Starting
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with perfect agreement, z = (1,1,0,0,0,1,1,0), anyone of the four 1s
may be made a °and any of the four Os may be made ai, so there are
16 = 4 x 4 assignments with exactly t(Z, r) = 6 agreements. Hence, there
are 17 assignments leading to six or more agreements. With six agreements
the signilicance level (2.5) is prob{t(Z, r) 2: 6} = 17/70 = 0.24, no longer a
small probability. It would not be surprising to see six or more agreements
if the treatment were without effect-it happens by chance as frequently
as seeing two heads when flipping two coins.
The key point deserves repeating. Probability enters the calculation only

through the random assignment of treatments. The needed probability dis-
tribution is known, not assumed. The resulting significance level does not
depend upon assumptions of any kind. If the same calculation were per-
formed in a nonrandomized study, it would require an assumption that
the distribution of treatment assignments, prob(Z = z), is some particu-
lar distribution, perhaps the assumption that all assignments are equally
probable, prob(Z = z) = 1/K. In a nonrandomized study, there may be
little basis on which to ground or defend this assumption, it may be wrong,
and it will certainly be open to responsible challenge and debate. In other
words, the importance of the argument just considered is that it is one
way of formally expressing the claim that randomized experiments are not
open to certain challenges that can legitimately be made to nonrandomized
studies.

2.4.3 Some Common Randomization Tests
Many commonly used tests are randomization tests in that their signili-
cance levels can be calculated using (2.5), though the tests are sometimes
derived in other ways as well. This section briefly recalls and reviews some
of these tests. The purpose of the section is to provide a reference for
these methods in a common terminology so they may be discussed and
used at later stages. Though invented at different times, it is natural to
see the methods as members of a few whose properties are similar,
and this is done beginning in §2.4.4. In most cases, the methods described
have various optimality properties which are not discussed here; see Cox
(1970) for the optimality properties of the procedures for binary outcomes
and Lehmann (1975) for optimality properties of the nonparametric proce-
dures. In all cases, the experiment is the uniform randomized experiment
in §2.3.2 with prob(Z = z) = l/K for all zEn.
Fisher's exact test for a 2 x 2 contingency table is, in fact, the test just

used for the example of the Lady and her tea. Here, there is one stratum,
S = 1; the outcome Ti is binary, that is, Ti = 1 or Ti = 0; and the test
statistic is the number of responses equal to 1 in the treated group, that
is, t(Z, r) = ZTr. The 2 x 2 contingency table records the values of Zi and
Ti, as shown in Table 2.2 for Fisher's example. Notice that the marginal
totals in this table are fixed by the structure of the experiment, because
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TABLE 2.2. The 2 x 2 Table for Fisher's Exact Test for the Lady Tasting Tea.
Response, ri

Treatment or control, Zi 1
o

Total

1

4

o

4

Total
4
4

8

N = 8 cups, ITr = 4 andlTZ = 4 are fixed in this experiment. Under the
hypothesis of no effect, the randomization distribution of the test statistic
ZTr is the hypergeometric distribution. The usual chi-square test for a 2 x 2
table is an approximation to the randomization significance level when N
is large.
The Mantel-Haenszel (1959) statistic is the analogue of Fisher's exact

test when there are two or more strata, S 2: 2, and the outcome rsi is
binary. It is extensively used in epidemiology and certain other fields. The
data may be recorded in a 2 x 2 x S contingency table giving treatment
Z by outcome r by stratum s. The test statistic is again the number of 1
responses among treated units, t(Z,r) = ZTr = Under
the null hypothesis, the contribution from stratum s, that is, L Zsirsi,
again has a hypergeometric distribution, and (2.5) is the distribution of
the sum of S independent hypergeometric variables. The Mantel-Haenszel
statistic yields an approximation to the distribution of ZTr based on its
expectation and variance, as described in more general terms in the next
section. One technical attraction of this statistic is that the large sample
approximation tends to work well for a 2 x 2 x S table with large N even
if S is also large, so there may be few subjects in each of the S tables. In
particular, the statistic is widely used in matching with multiple controls,
in which case m s = 1 for each s.

McNemar's (1947) test is for paired binary data, that is, for S pairs with
ns = 2, m s = 1, and rsi = 1 or rsi = O. The statistic is, yet again, the num-
ber of 1 responses among treated units; that is, t(Z, r) = ZTr. McNemar's
statistic is, in fact, a special case of the Mantel-Haenszel statistic, though
the 2 x 2 x S table now describes S pairs and certain simplifications are
possible. In particular, the distribution of ZTr in (2.5) is that of a constant
plus a certain binomial random variable.
Developing these methods for 2 x 2 x S tables in a different way, Birch

(1964) and Cox (1966, 1970) show that these three tests with binary re-
sponses possess an optimality property, so there is a sense in which Fisher's
exact test, the Mantel-Haenszel test, and McNemar's test are the best tests
for the problems they address. Specifically, they show that the test statistic
t(Z, r) = ZTr together with the significance level (2.5) is a uniformly most
powerful unbiased test against alternatives defined in terms of constant
odds ratios.
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Mantel's (1963) extension of the Mantel-Haenszel test is for responses
Tsi that are confined to a small number of values representing a numerical
scoring of several ordered categories. As an example of such an outcome,
the New York Heart Association classifies coronary patients into one of four
categories based on the degree to which the patient is limited in physical
activity by coronary symptoms such as chest pain. The categories are:

(1) no limitation of physical activity;

(2) slight limitation, comfortable at rest, but ordinary physical activity
results in pain or other symptoms;

(3) marked limitation, minor activities result in coronary symptoms; and

(4) unable to carryon any physical activity without discomfort, which may
be present even at rest.

The outcome Tsi for a patient is then one of the integers 1, 2, 3, or 4. In
this case the data might be recorded as a 2 x 4 x 5 contingency table for
Z x T X s. Mantel's test statistic is the sum of the response scores for treated
units; that is, t(Z,r) = ZTr . Birch (1965) shows that the test is optimal in
a certain sense.
In the case of a single stratum, 5 = 1, Wilcoxon's (1945) rank sum test is

commonly used to compare outcomes taking many numerical values. In this
test, the responses are ranked from smallest to largest. If all N responses
were different numbers, the ranks would be the numbers 1, 2, ... ,N. If
some of the responses were equal, then the average of their ranks would be
used. Write qi for the rank of Ti, and write q = (ql,'" ,qN )T. For instance,
if N = 4, and Tl = 2.3, T2 = 1.1, T3 = 2.3, and T4 = 7.9, then ql = 2.5,
q2 = 1, q3 = 2.5, and q4 = 4, since T2 is smallest, T4 is largest, and TI
and T3 share the ranks 2 and 3 whose average rank is 2.5 = (2 + 3)/2.
Note that the ranks q are a function of the responses r which are fixed if
the treatment has no effect, so q is also fixed. The rank sum statistic is
the sum of the ranks of the treated observations, t(Z, r) = ZTq , and its
significance level is determined from (2.5). The properties of the rank sum
test have been extensively studied; for instance, see Lehmann (1975, §1) or
Hettmansperger (1984, §3). Wilcoxon's rank sum test is equivalent to the
Mann and Whitney (1947) test.
In the case of 5 matched pairs with ns = 2 and m s = 1 for s = 1, ... ,5,

Wilcoxon's (1945) signed rank test is commonly used for responses taking
many values. Here, (Zsl, Zs2) = (1,0) if the first unit in pair s received the
treatment or (Zsl, Zs2) = (0,1) if the second unit received the treatment.
In this test, the absolute differences in responses within pairs ITsl -Ts21 are
ranked from 1 to 5, with average ranks used for ties. Let ds be the rank of
ITsl -Td thus obtained. The signed rank statistic is the sum of the ranks for
pairs in which the treated unit had a higher response than the control unit.
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To write this formally, let Csl = 1 if rsl > rs2 and Csl = 0 otherwise, and
similarly, let Cs2 = 1 if rs2 > rsl and Cs2 = 0 otherwise, so Csl = Cs2 = 0
if rsl = rs2. Then ZslCsl + Zs2Cs2 equals 1 if the treated unit in pair s
had a higher response than the control unit, and equals zero otherwise. It
follows that the signed rank statistic is L dsL ;=1CsiZsi. Note that ds
and Csi are functions of r and so are fixed under the null hypothesis of
no treatment effect. Also, if rs l = r s2, then pair s contributes zero to the
value of the statistic no matter how treatments are assigned. As with the
rank sum test, the signed rank test is widely used and has been extensively
studied; for instance, see Lehmann (1975, §3) or Hettmansperger (1984,
§2). Section 3.2.4 below contains a numerical example using the sign-rank
statistic in an observational study.
For stratified responses, a method that is sometimes used involves cal-

culating the rank sum statistic separately in each of the S strata, and
taking the sum of these S rank sums as the test statistic. This is the strat-
ified rank sum statistic. It is easily checked that this statistic has the form
t(Z,r) = ZTq resembling the rank sum statistic; however, the ranks in q
are no longer a permutation of the numbers 1, 2, ... ,N, but rather of the
numbers 1, ... ,nl, 1, ... ,n2, ... , 1, ... ,ns, with adjustments for ties if
needed. Also n has changed.
Hodges and Lehmann (1962)· find the stratified rank sum statistic to

be inefficient when S is large compared to N. In particular, for paired
data with S = N /2, the stratified rank test is equivalent to the sign test,
which in turn is substantially less efficient than the signed rank test for
data from short-tailed distributions such as the Normal. They suggest as
an alternative the method of aligned ranks: the mean in each stratum is
subtracted from the responses in that stratum creating aligned responses
that are ranked from 1 to N, momentarily ignoring the strata. Writing q
for these aligned ranks, the aligned rank statistic is the sum of the aligned
ranks in the treated group, t(Z,r) = ZTq . See also Lehmann (1975, §3.3).
Another statistic is the median test. Let Csi = 1 if rsi is greater than the

median of the responses in stratum s and let Csi = 0 otherwise, and let c be
the N -tuple containing the Csi. Then t(Z, r)= ZTc is the number of treated
responses that exceed their stratum medians. With a single stratum, S = 1,
the median test is quite good in large samples if the responses have a double
exponential distribution, a distribution with a thicker tail than the normal;
see, for instance, Hettmansperger (1984, §3.4, p. 146) and the more critical
comments by Freidlin and Gastwirth (2000). In this test, the median is
sometimes replaced by other quantiles or other measures of location.
Start with any statistic t(Z, r) and the randomization distribution of

t(Z, r) may be determined from (2.5). This is true even of statistics that
are commonly referred to a theoretical distribution instead, for instance,
the two-sample or paired t-tests, among others. Welch (1937) and Wilk
(1955) studied the relationship between the randomization distribution and
the theoretical distribution of statistics that were initially derived from
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assumptions of Normally and independently distributed responses. They
suggest that the theoretical distribution may be viewed as a computation-
ally convenient approximation to the desired but computationally difficult
randomization distribution. That is, they suggest that t-tests, like rank
tests or Mantel-Haenszel tests, may be justified solely on the basis of the
use of randomization in the design of an experiment, without reference to
Normal independent errors. These findings depend on the good behavior
of moments of sums of squares of responses over the randomization distri-
bution; therefore, they depend on the absence of extreme responses. Still,
the results are important as a conceptual link between Normal theory and
randomization inference.

2.4.4 Classes of Test Statistics
The similarity among the commonly used test statistics in §2.4.3 is striking
but not accidental. In this book, these statistics are not discussed indi-
vidually, except when used in examples. The important properties of the
methods are shared by large classes of statistics, so it is both simpler and
less repetitive to discuss the classes.
Though invented by different people at different times for different pur-

poses, the commonly used statistics in §2.4.3 are similar for good reason.
As the sample size N increases, the number K of treatment assignments
in n grows very rapidly, and the direct calculation in (2.5) becomes very
difficult to perform, even with the fastest computers. To see why this is
true, take the simplest case consisting of one stratum, S = 1, and an equal
division of the n subjects into m = n/2 treated subjects and m = n/2 con-
trols. Then there are K = (n/2) treatment assignments in n. If one more
unit is added to the experiment, increasing the sample size to n+1, then K
is increased by a factor of (n + 1) / {(n/2) + I}, that is, K nearly doubles.
Roughly speaking, if the fastest computer can calculate (2.5) directly for
at most a sample of size n, and if computing power doubles every year for
10 years, then 10 years hence computing power will be 210 = 1024 times
greater than today and it will be possible to handle a sample of size n +10.
Direct calculation of (2.5) is not practical for large n.
The usual solution to this problem is to approximate (2.5) using a large

sample or asymptotic approximation. The most common approximations
use the moments of the test statistic, its expectation and variance, and
sometimes higher moments. The needed moments are easily derived for
certain classes of statistics, including all those in §2.4.3.
As an alternative to asymptotic approximation, there are several propos-

als for computing (2.5) exactly, but they are not, as yet, commonly used.
One is to compute (2.5) exactly but indirectly using clever computations
that avoid working with the set n. For some statistics this can be done by
calculating the characteristic function of the test statistic and inverting it
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using the fast Fourier transform; see Pagano and Tritchler (1983). A second
approach is to design experiments differently so that n is a much smaller
set, perhaps containing 10,000 or 100,000 treatment assignments. In this
case, direct calculation is possible and any test statistic may be used; see
Tukey (1985) for discussion.
The first class of statistics will be called sum statistics and they are of

the ZTq, where q is some function of r. A sum statistic
sums the scores qsi for treated units. All of the statistics in §2.4.4 are
sum statistics for suitable choices of q. In Fisher's exact test, the Mantel-
Haenszel test, and McNemar's test, q is simply equal to r. In the rank sum
test, q contains the ranks of r. In the median test, q the vector of ones
and zeros identifying responses rsi that exceed stratum medians. In the
signed rank statistic, qsi = dscsi.
Simple formulas exist for the moments of sum statistics under the null

hypothesis that the treatment is without effect. In this case, r is fixed, so
q is also fixed. The moment formulas use the properties of simple random
sampling without replacement. Recall that a simple random sample without
replacement of size m from a population of size n is a random subset of m
elements from a set with n elements where each of the (;:.) subsets of size m
has the same probability 1/(;:'). Cochran (1963) discusses simple random
sampling. In a uniform randomized experiment, the m s treated units in
stratum s are a simple random sample without replacement from the n s
units in stratum s. The following proposition is proved in Problem 4.

Proposition 2 In a uniform randomized experiment, if the treatment has
no effect,. the expectation and variance of a sum statistic ZTq are

S
E(ZTq ) = 2: msqs,

- s=1

and

where

1 n.
qs = - 2:qSi.

n s i=1

Moments are easily determined for sum statistics, but other classes of
statistics have other useful properties. The first such class, the sign-score
statistics, is a subset of the sum statistics. A statistic is a sign-score statistic
ifit is of the· form t(Z, r) = I:;=1 ds CsiZsi, where Csi is binary, Csi = 1
or Csi = 0, and both d s and Csi are functions of r. Fisher's exact test, the
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Mantel-Haenszel test, and McNemar's test are sign-score statistics with
ds = 1 and Csi = r si' The signed rank and median test statistics are
also sign-score statistics, but with Csi and ds defined differently. A sign-
score statistic is a sum statistic with qsi = dsCsi, but many sum statistics,
including the rank sum statistic, are not sign-score statistics. In Chapter
4, certain calculations are simpler for sign-score statistics than for certain
other sum statistics, and this motivates the distinction.
Another important class of statistics is the class of arrangement increas-

ing functions of Z and r, which are defined in a moment. Informally, a
statistic t(Z, r) is arrangement-increasing if it increases in value as the
coordinates of Z and r are rearranged into an increasingly similar order
within each stratum. In fact, all of the statistics in §2.4.3 are arrangement-
increasing, so anything that is true of arrangement-increasing statistics is
true of all the commonly used statistics in §2.3.2. Hollander, Proschan,
and Sethuraman (1977) discuss many properties of arrangement-increasing
functions.
A few preliminary terms are useful. The numbers Sand ns , s = 1, ... , S

with N = Lns, are taken as given. A stratified N-tuple a is an N-tuple
in which the N coordinates are divided into S strata with n s coordinates
in stratum s, where asi is the ith of the n s coordinates in stratum s. For
instance, Z and r are each stratified N-tuples. If a is a stratified N-tuple,
and if i and j are different positive integers less than or equal to n s , then let
asij be the stratified N-tuple formed from a by interchanging asi and asj,
that is, by placing the value asj in the ith position in stratum s and placing
the value asi in the jth position in stratum s. To avoid repetition, whenever
the symbol asij appears, it is assumed without explicit mention that the
subscripts are appropriate, so s is a positive integer between 1 and Sand
i and j are different positive integers less than or equal to n s . A function
f(a, b) of two stratified N-tuplesis invariant if f(a, b) = f(asij, bsij ) for
all s, i, j, so renumbering units in the same stratum does not change the
value of f(a, b). For instance, the function zTq is an invariant function of
z and q.

Definition 3 An invariant function f(a,b) of two stratified N-tuples is
arrangement-increasing (or AI) if f(a, b sij ) 2: f(a,b) whenever

(asi - asj)' (bsi - bsj )::; O.

Notice what this definition says. Consider the ith and jth unit in stratum
s. If (asi - asj)(bsi - bsj ) < 0, then of these two units, the one with the
higher value of a has the lower value of b, so these two coordinates are out
of order. However, in a and bsij , these two coordinates are in the same
order, for bsi and bsj have been interchanged. The definition says that an
arrangement increasing function will be larger, or at least no smaller, when
these two coordinates are switched into the same order.
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TABLE 2.3. A Hypothetical Example Showing an Arrangement-Increasing Statis-
tic.

z q q23

1 Treated 1 4 4
2 Treated 1 2 3
3 Control 0 3 2
4 Control 0 1 1

Rank sum 6 7

Notice also what the definition says when (asi -asj )(bsi -bsj ) = O. In this
case, either asi = asj or bsi = bsj or both. In this case, f (a, b sij ) = f (a, b).
Consider some examples. The function zTq is arrangement-increasing as

a function of z and q. To see this, note that zTqsij-ZTq = (Zsiqsj+Zsjqsi)-
(Zsiqsi +Zsjqsj) = -(ZSi - Zsj )(qsi - qsj), so if (Zsi - Zsj )(qsi - qsj) .:::; 0 then
zTqsij - zTq O. This shows zTq is arrangementcincreasing.
Table 2.3 is a small illustration for the rank sum statistic with a single

stratum, S = 1, n = 4 units, of whom m = 2 received the treatment. Here,
(Z2 - Z3)(q2 - q3) = (1 - 0)(2 - 3) = -1 :::; 0, and the rank sum zTq = 6 is
increased to zTq23 = 7 by interchanging q2 and q3.
As a second example, consider the function t(z, r) = zTq, where q is a

function of r, which may be written explicitly as q(r). Then t(z, r) mayor
may not be arrangement-increasing in z and r depending upon how q(r)
varies with r. The common statistics in §2.4.3 all have the following two
properties:

(i) permute r within strata and q is permuted in the same way; and

(ii) within each stratum, larger rsi receive larger qsi'

One readily checks that t(z, r) = zTq is arrangement-increasing if q(r)
has these two properties, because the first property ensures that t(z, r) is
invariant, and the second ensures that rsi -rsj 0 implies qsi -qsj 0, so
(Zsi - Zsj )(rsi - rsj) :::; 0 implies (Zsi - Zsj )(qsi - qsj) :::; 0, and the argument
of the previous paragraph applies. The important conclusion is that all of
the statistics in §2.4.3 are arrangement-increasing.
In describing the behavior of a statistic when the null hypothesis does

not hold and instead the treatment has an effect, a final class of statistics
is useful. Many statistics that measure the size of the difference between
treated and control groups would tend to increase in value if responses
in the treated group were increased and those in the control group were
decreased. Statistics with this property will be called effect increasing, and
the idea will now be expressed this formally. A treated unit has 2Zsi-l = 1,
since Zsi = 1, and a control unit has 2Zsi -1 = -1 since Zsi = O. Let zEn



38 2. Randomized Experiments

TABLE 2.4. Hypothetical Example of an Effect Increasing Statistic.
i Zi 2zi - 1 ri ri
1 Treated 1 15 6
2 Treated 1 1 2 4
3 Control 0 -1 3 2
4 Control 0 -1 1 1
Rank sum 6 7

be a possible treatment assignment and let r and r* be two possible values
of the N-tuple of responses such that (r;i - rsi)(2zsi - 1) :::: 0 for all s, i.
With treatments given by z, this says that r;i :::: rsi for every treated unit
and r;i S rsi for every control unit. In words, if higher responses indicated
favorable outcomes, then every treated unit does better with r* than with
r, and every control does worse with r* than with r. That is, the difference
between treated and control groups looks larger with r* than with r. The
test statistic is effect increasing if t(z, r) S t(z, r*) whenever rand r* are
two possible values of the response such that (r;i - r si)(2zsi - 1) :::: 0 for
all s, i. All of the commonly used statistics in §2.4.3 are effect increasing.
Table 2.4 contains a small hypothetical example to illustrate the idea

of an effect increasing statistic. Here there is a single stratum, S = 1, and
four subjects, n = 4, of whom m = 2 received the treatment. Notice that
when ri and ri are compared, treated subjects have ri :::: ri while controls
have ri Sri. If the responses are ranked 1, 2, 3, 4, and the ranks in the
treated group are summed to give Wilcoxon's rank sum statistic, then the
rank sum is larger for ri than for rio
In summary, this section has considered four classes of statistics:

(i) the sum statistics;

(ii) the arrangement-increasing statistics;

(iii) the effect increasing statistics; and

(iv) the sign-score statistics.

All of the commonly used statistics in §2.4.3 are members of the first
three classes, and most are sign-score statistics; however, the rank sum
statistic, the stratified rank sum statistic, and Mantel's extension are not
sign-score statistics.

2.4.5 *No Effect Means No Effect
No effect means no effect. A nonzero effect that varies from one unit to
the next and that is hard to fathom or predict is, nonetheless, a nonzero
effect. It may not be an immediately useful effect, but it is an effect,
perhaps an effect that can someday be understood, tamed, and made useful.
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Empirically, it may be difficult to discern erratic unsystematic effects, but
logically they are distinct from no effect.
To emphasize this point, consider the extreme case. Suppose that we

somehow discerned that the treatment erratically benefits some patients
and harms others, but that we have no way of predicting who will benefit
or'who will be harmed, so the average effect of the treatment is essentially
zero in every large group of patients defined by pretreatment variables. In
point of fact, it is very difficult to discern something like this, unless we
covertly introduce more information that does distinguish these supposedly
indistinguishable patients. Suppose, however, we can discern this, perhaps
because the treatment produces one of two easily distinguished biochemical
reactions, one beneficial, the other harmful, and neither reaction is ever
seen among controls; however, we are completely at a loss to identify in
advance those patients who will have beneficial reactions. This is a nonzero
treatment effect, perhaps not a very useful one given current knowledge,
but a nonzero effect nonetheless. What would a scientist do with such an
effect? Might the scientist sometimes return with the treatment to the
laboratory in an effort to understand why only some patients exhibit the
beneficial biochemical reaction? In contrast, no treatment effect-really no
treatment effect-would send the scientist in search of another treatment.
No effect is one hypothesis among many. It is rarely, perhaps never,

sufficient to know whether the null hypothesis of no treatment effect is
compatible with observed data. And yet, it is typically of interest to know
this along with much more. Section 2.5 and Chapter 5 discuss models for
treatment effects and associated methods of inference, including confidence
intervals.
Fisher (1935) and Neyman (1935), two brilliant founders of statistics,

did not agree about the meaning of the null hypothesis of no treatment
effect. The hypothesis of no effect as I have described it is Fisher's version.
Fisher's conception is particular: randomization justifies causal inferences
about particular treatment effects, on particular units, at a particular time,
under particular circumstances. Change the units or the times or the cir-
cumstances and the findings may change to an extent not adequately ad-
dressed by statistical standard errors. These standard errors measure one
very important source of uncertainty, namely, uncertainty about how units
would have responded to a treatment they did not receive, that is, uncer-
tainty about the effects caused by the treatment. Campbell and Stanley
(1963) say that randomization ensures internal validity but not external
validity; see §2.7.1 and the discussion of efficacy and effectiveness in §5.4.
Neyman's (1935, p. 110) conception is general: we can "repeat the ex-
periment indefinitely without any change of vegetative conditions or of ar-
rangement so that ... the yields from this plot will form a population ...."
For Neyman, the variations we do not understand become, by assumption,
variations from sampling a population. In point of fact, we cannot repeat
the experiment indefinitely, and we cannot ensure the same experimental
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conditions, but this conception concerns a hypothetical world in which we
can. This was not a disagreement about matters of fact, but about matters
of art, the art of developing statistical concepts for scientific applications.
In most cases, their disagreement is entirely without technical conse-

quence: the same procedures are used, and the same conclusions are reached.
Perhaps this is expressed most beautifully by Lehmann (1959, §5). First,
Lehmann (1959, §5.7, Theorem 3) shows that inferences under a popula-
tion model can be distribution-free only if they are made particular by
conditioning on observed responses, yielding Fisher's randomization test.
Lehmann (1959, §5.8) then uses a population model and the Neyman-
Pearson lemma to obtain most powerful permutation tests; that is, he uses
Neyman's conception to obtain the best tests of the type Fisher was propos-
ing. Whatever Fisher and Neyman may have thought, in Lehmann's text
they work together. The importance to mathematical statistics and to sci-
ence of infinite population models and Neyman's contributions are, today,
surely unquestioned.
And yet, when one is thinking about the science of an experiment, it

is surely true that random assignment of treatments justifies inferences
that are particular, that. is, particular to certain units at certain times
under certain circumstances. If the inference reaches beyond that to in-
finite populations extending into the indefinite future, then this has been
accomplished by assuming those populations into existence, and assuming
away much that is true of the world we actually inhabit. In those in-
stances where their conceptions point in scientifically different directions-
for instance, the unpredictable but distinguishable biochemical reactions
above-it seems to me that Fisher's conception more closely describes how
scientists think and work. Much that we cannot currently predict and do
not currently fathom is not random error. The variation we do not fathom
today we intend to decipher tomorrow.

2.5 Simple Models for Treatment Effects

2.5.1 Responses When the Treatment Has an Effect
If the treatment has an effect, then the observed N -tuple of responses for
the N units will be different for different treatment assignments zEn-this
is what it means to say the treatment has an effect. In earlier sections, the
null hypothesis of no treatment effect was assumed to hold, so the observed
responses were fixed, not varying with z, and the response was written r.
When the null hypothesis of no effect is not assumed to hold, the response
changes with z, and the response observed when the treatment assignment
is zEn will be written r z . The null hypothesis of no treatment effect says
that r z does not vary with z, and instead r z is a constant the same for
all z; in this case, r was written for this constant. Notice that, for each
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z E 0, the response r z is some nonrandom N-tuple-probability has not
yet entered the discussion. Write rsiz for the (8, i) coordinate of r z , that is,
for the response of theith unit in stratum 8 when the N units receive the
treatment assignment z.
To make this definite, return for a moment to Fisher's Lady tasting tea. If

the Lady could not discriminate at all, then no matter how milk is added to
the cup--that is, no matter what z is-she will classify the cups in the same
way; that is, she will give the same binary 8-tuple of responses r. On the
other hand, if she discriminates perfectly, always classifying cups correctly,
then her 8-tuple of responses will vary with z; indeed, the responses will
match the treatment assignments so that r z = z.
If treatments are randomly assigned, then the treatment assignment Z

is a random variable, so the observed responses are also random variables
as they depend on Z. Specifically, the observed response is the random
variable rz, that is, one of the many possible r z , z E 0, selected by pick-
ing a treatment assignment Z by the random mechanism that governs the
experiment. Write R = rz for the observed response, where R like Z is a
random variable.
In principle, each possible treatment assignment z E 0 might yield a

pattern of responses r z that is unrelated to the pattern observed with
another z. For instance, in a completely randomized experiment with 50
subjects divided into two groups of 25, there might be 101= == 1.3 X
1014 different and unrelated 50-tuples r z . Since it is difficult to comprehend
a treatment effect·in such terms, we look for regularities, patterns, or mod-els
of the behavior of r z as z varies over O. The remainder of §2.5 discusses the
most basic models for r z as z varies over O. Chapter 5 discusses additional
models for treatment effects.

2.5.2 No Interference Between Units
A first model is that of "no interference between units" which means that
"the observation on one unit should be unaffected by the particular assign-
ment of treatments to the other units" (Cox, 1958a, §2.4). Rubin (1986)
calls this SUTVA for the "stable unit treatment value assumption." For-
mally, no interference means that r siz varies with Zsi but not with the other
coordinates of z. In other words, the response of the ith unit in stratum
8 depends on the treatment assigned to this unit, but not on the treat-
ments assigned to other units, so this unit has only two possible values of
the response rather than 101 possible values. When this model is assumed,
write rTsi and rCsi for the responses of the ith unit in stratum 8 when
assigned, respectively; to treatment or control; that is, rTsi is the common
value of rsiz for all z E 0 with Zsi = 1, and rCsi is the common value
of r siz .for all Z E 0 with Zsi = O. Then the observed response from the
ith unit in stratum 8 is Rsi = rTsi if Zsi = 1 or Rsi = rCsi if Zsi = 0,
which may also be written Rsi = ZsirTsi + (1 - Zsi)rcsi. This model, with
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one potential response for each unit under each treatment, has been im-
portant both to experimental design-see Neyman (1923), Welch (1937),
Wilk (1955), Cox (1958b, §5), and Robinson (1973)-and to causal infer-
ence more generally-see Rubin (1974, 1977) and Holland (1986). When
there is no interference between units, write rT for (TTll, ... , TTS,ns) T and
rc for (TCll,'" ,TCS,ns)T.
"No interference between units" is a model and it can be false. No

interference is often plausible when the units are different people and the
treatment is a medical intervention with a biological response. In this
case, no interference means that a medical treatment given to one patient
affects only that patient, not other patients. That is often true. However,
a vaccine given to many people may protect unvaccinated individuals by
reducing the spread of a virus (so called herd immunity) and this is a form
of interference. No interference is less plausible in some social settings,
such a workplace or a classroom, where a reward given to one person may
be visible to others, and may affect their behavior. No interference is often
implausible when the strata are people and the units are repeated measures
on a person; then a treatment given at one time may affect responses at
later times; see Problem 2. In randomized single subject experiments, such
as the Lady tasting tea, no interference is typically implausible.

2.5.3 The Model of an Additive Effect, and Related Models
The model of an additive treatment effect assumes units do not interfere
with each other, and the administration of the treatment raises the response
of a unit by a constant amount T, so that TTsi = TCsi + T for each s, i.
The principal attraction of the model is that there is a definite parameter
to estimate, namely, the additive treatment effect T. As seen in §2.7, in
a uniform randomized experiment, many estimators do indeed estimate T

when this model holds.
In understanding the model of an additive treatment effect, it is im-

portant to keep in mind that the pair of responses, (TTsi, TCsi), is never
jointly observed for one unit (s, i). Therefore the model of an additive
effect, TTsi = TCsi + T, cannot be checked directly by comparing TTsi and
TCsi for particular units. The treatment Zsi and the observed response
Rsi = ZsiTTsi + (1 - Zsi)TCsi are observed, and one can check what the
model, TTsi = TCsi + T, implies about these observable quantities. In a
completely randomized experiment with a single stratum, S = 1, dropping
the s, the model of an additive treatment effect, TTi = TCi +T, implies that,
as sample sizes m and n-m increase, the distribution of observed responses
for treated units Zi = 1 will be shifted by T when compared to the dis-

tribution of observed responses for controls Zi =0, so the distributions
will have the same shape and dispersion. That is, the histograms or box-
plots would look the same, but one would be moved left or right relative
to the other. This is a shift model, commonly used in nonparametrics; see
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Lehmann (1975). In a uniform randomized experiment with several strata
8> 1 and rTsi = rCsi +T, the distribution ofresponses may have different
shapes and dispersions in different strata, but within each stratum, the
treated and control distributions are shifted by ,. This is a fairly weak
form of no interaction between treatment group and stratum in the 2 x 8
table of observable distributions, and it implies much less about observable
distributions than the analogous nonparametric analysis of variance model,
which typically assumes a common shape and dispersion in all 28 cells. If
the only data are (Zsi, R si ), does the additive model have content beyond
its implications for observable distributions? See Problem 7.
Under the additive model, the observed response from the ith unit in

stratum s is R si = rCsi + ,Zsi, or R = rc + ,Z. It follows that the
adjusted responses, R-TZ = rc, are fixed, not varying with the treatment
assignment, Z, so the adjusted responses satisfy the null hypothesis of no
effect. This fact will be useful in drawing inferences about T.
There are many similar models, including the model of a multiplica-

tive effect, rTsi = OTCsi' Chapter 5 discusses quite different models for
treatment effects.

2.5.4 *Positive Effects and Larger Effects
The model of an additive effect assumes a great deal about the relationship
between rTsi and rCsi' At times, it is desirable to describe the behavior of
statistical procedures while assuming much less. When there is no inter-
ference between units, an effect is a pair (rT' rc) giving the responses of
each unit under each treatment. Two useful concepts are positive effects
and larger effects. Unlike the model of an additive treatment effect, positive
effects and larger effects are meaningful not just for continuous responses,
but also for binary responses, for ordinal responses, and as seen later in
§2.8, for censored responses and multivariate responses.
A treatment has a positive effect if rTsi rCsi for all units (s, i) with

strict inequality for at least one unit. A more compact way of writing this
is that (rT, rc) is a positive effect if rT rc with rT =1= rc. This says
that application of the treatment never decreases a unit's response and
sometimes increases it. For instance, there is a positive effect if the effect
is additive and, > O. Hamilton (1979) discusses this model in detail when
the outcome is binary.
Consider two possible effects, say (rT' rc) and (rT, rc)' Then (rT, rc)

is a larger effect than (rT' rc) if rTsi rTsi and rCsi ::; rCsi for all s, i. For
instance, the simplest example occurs when the treatment effect is additive
with the same responses under control, namely, r c = rc, rT = rc + ,I,
and rT = rc + T'l, for in this case (rT,rc) exhibits a larger effect than
(rT,rc) if,· T. In general, write Rand R' for the observed responses
from, respectively, the effects (rT' rc) and (rT, rc), so R;i = rTsi if Zsi = 1
and R;i = rCsi if Zsi = O.
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If a statistical test rejects the null hypothesis 5% of the time when it is
true, one would hope that it would reject at least 5% of the time when it is
false in the anticipated direction. Recall that a statistical test is unbiased
against a collection of alternative hypotheses if the test is at least as likely
to reject the null hypothesis when one of the alternatives is true as when the
null hypothesis is true. The next proposition says that all of the common
tests in §2.4.3 are unbiased tests against positive treatment effects, and the
test statistic is larger when the effect is larger. The proposition is proved
in somewhat more general terms in the appendix, §2.9.

Proposition 4 In a randomized experiment, a test statistic that is ef-
fect increasing yields an unbiased test of no effect against the alternative
of a positive effect, and if (rr, rc) is a larger effect than (rr, rc), then
t(Z,R*) 2: t(Z,R).

2.6 Confidence Intervals ..

2.6.1 Testing General Hypotheses
So far, the test statistic t(Z, R) has been used to test the null hypothe-
sis of no treatment effect. There is an extension to test hypotheses that
specify a particular treatment effect. In §2.6.2, this extension is used to
construct confidence intervals. As always, the confidence interval is the set
of hypotheses not rejected by a test.
Consider testing the hypothesis Ho : 7 = 70 in the model of an additive

effect, R = rC+7Z. The idea is as follows. If the null hypothesis Ho : 7 = 70
were true, then rc =R-70Z, so testing Ho : 7 = 70 is the same as testing
that R - 7 0Z satisfies the null hypothesis of no treatment effect.
More precisely, if rc were known, the probability, say a, that t(Z, rc)

is greater than or equal to some fixed number T could be determined from
(2.3). If the null hypothesis were true, then rc would equal the adjusted
responses, R - 70Z, so under the null hypothesis, rc can be calculated
from 70 and the observed data. If the hypothesis Ho : 7 = TO is true, then
the chance that t(Z, R - ToZ) 2: T is a, where a is calculated as described
above with rc = R - 7 0Z.
Now, suppose the null hypothesis is not true, say instead 7 > TO, and

consider the behavior of the above test. In this case, R = rc +7Z and the
adjusted responses R-TOZ equal rC+(7-To)Z, so the adjusted responses
will vary with the assigned treatment Z. If a unit receives the treatment,
it will have an adjusted response that is T - TO higher than if this unit
receives the control. If the test statistic is effect increasing, as is true of
all the statistics in §2.4.3, then t(Z, R - TOZ) = t{Z, rc + (T - To)Z} 2:
t(Z, rc) = t(Z, R - 7Z), where the inequality follows from the definition
of an effect increasing statistic. In words, if the null hypothesis is false and
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TABLE 2.5. Example of Confidence Interval Computations.
Ranks of

Control Observed Adjusted Adjusted
Unit Response Response Response Responses

+
1 2 1 9 8 7
2 1 0 1 1 1
3 3 0 3 3 2
4 4 0 4 4 3
5 0 1 7 6 5
6 4 1 11 10 8
7 1 1 8 7 6
8 5 0 5 5 4

7= =1

instead 7 > 70, then an effect increasing test statistic t(Z, R - 70Z) will
be larger with the incorrect 70 than it would have been had we tested the
correct value T.

Table 2.5 illustrates these computations with a rank sum test. It is a
hypothetical uniform randomized experiment with N = 8 units, all in a
single stratum S = 1, with m = 4 units assigned to treatment, and an
additive treatment effect 7 = 7, though the null hypothesis incorrectly says
Ho : 7 = 70 = 1. The rank sum computed from the adjusted responses
R - 1Z is 7 + 5 + 8 + 6 = 26, which is the largest possible rank sum for
N = 8, m = 4, and the one-sided significance level ism-1 = 1/70 = 0.014.
The two-sided significance level is 2 x 0.014 = 0.028. After removing the
hypothesized 70 = 1 from treated units, the treated units continue to have
higher responses than the controls.

2.6.2 Confidence tntervals by Inverting a Test
Under the model of an additive treatment effect, R = rc + 7Z, a 1 - a
confidence set for 7 is obtaining by testing each value of 7 as in §2.6.1 and
collecting all values not rejected at level a into a set A. More precisely, A is
the set of values of 7 that, when tested, yield significance levels or P-values
greater than or equal to a. For instance, in the example in Table 2.5, the
value 7 = 1 would not be contained in a 95% confidence set. When the
true value T is tested, it is rejected with probability no greater than a,
so the random set A contains the true 7 with probability at least 1 - a.
This is called "inverting" a test, and it is the standard way of obtaining a
confidence set from a test; see, for instance, Cox and Hinkley (1974, §7.2)
or Lehmann (1959, §3.5). For many test statistics, a two-sided test yields
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a confidence set that is an interval, whose endpoints may be determined
by a line search, as illustrated in §4.3.5. Section 3.2.4 uses this confidence
interval in an observational study of lead in the blood of children.

2.7 Point Estimates

2.7.1 Unbiased Estimates of the Avemge Effect
The most quoted fact about randomized experiments is that they lead to
unbiased estimates of the average treatment effect. Take the simplest case, a
uniform randomized experiment with a single stratum, with no interference
between units. In this case, there are m treated units, N - m control units,
E(Zi) = miN, R; = rTi if Zi = 1, and R; = rCi if Zi = O. The difference
between the mean response in the treated group, namely, (11m) 2': ZiR;,
and the mean response in the control group, namely, {l/(N - m)} 2':(1-
Zi)R;, has expectation

E{'" ZJ4 _ (1 - Zi)R;}=E {", ZirTi _ (1 - Zi)rCi}
L.J m N-m L.J m N-m

='" (mIN)rTi _ (1 - mlN)rci '" rr _ rc'
L.J m N-m NL.J· .,

and the last term is the average of the N treatment effects rTi - rCi for the
N experimental units. In words, the difference in sample means is unbiased
for the average effect of the treatment. Notice carefully that this is true
assuming only that there is no interference between units. There is no
assumption that the treatment effect rTi - rCi is constant from unit to
unit, no assumption about interactions.
The estimate is unbiased for the average effect on the N units in this

study, namely, (liN) LrTi - rCi, but this says nothing about the effect
on other units not in the study. Campbell and Stanley (1963) say that a
randomized experiment has internal validity in permitting inferences about
effects for the N units in the study, but it need not have external validity
in that there is no guarantee that the treatment will be equally effective for
other units outside the study; see also §2.4.5. The related issue of efficacy
and effectiveness is discussed in §5.4.
The difference in sample means may be biased when there are two or

more strata and the experimenter assigns disproportionately more subjects
to the treatment in some strata than in others. However, there is an unbi-
ased estimate that corrects the imbalance. It consists of calculating, within
stratum s, the difference between the average response in the treated group,
namely, (l/ms) Li ZsiRsi, and the average response in the control group,
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namely, {l/(ns - m s)} L:i(l-Zsi )Rsi , and weighting this difference by the
proportion of units in stratum s, namely, ns/N. The estimate, called direct
adjustment, is then:

(2.6)

To check that (2.6) is unbiased, recall that, in a uniform randomized ex-
periment, Zsi has expectation ms/ns. It follows that (2.6) has expectation

so direct adjustment does indeed give an unbiased estimate of the average
effect. In a very clear discussion, Rubin (1977) does calculations of this
kind.
In effeyt, direct adjustment views the treated units and the control units

as two stratified random samples from the N units in the experiment. Then
(2.6) is the usual stratified estimate of mean response to treatment in the
population of N units minus the usual estimate of the mean response to
control in the population of N units. Notice again that direct adjustment
is unbiased for the average treatment effect even if that effect varies from
unit to unit or from stratum to stratum. On the other hand, the average
effect is but a summary of the effects, and not a complete description, when
the effect varies from one stratum to another.

2.1.2 Hodges-Lehmann Estimates of an Additive Effect
Under the model of an additive effect, R = rc + TZ, there are many esti-
mates of T. One due to Hodges and Lehmann (1963) is closely tied to the
test in §2.4 and the confidence interval in §2.6. Recall that Ho : T = TO is
tested using t(Z, R - ToZ), that is, by subtracting the hypothesized treat-
ment effect TOZ from the observed responses R, and asking whether the
adjusted responses R - ToZ appear to be free of a treatment effect. The
Hodges-Lehmann estimate of T is that value f such that the adjusted re-
sponsesR-fZ appear to be exactly free of a treatment effect. Consider this
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in detail. Throughout this section, the experiment is a uniform randomized
experiment. _
Suppose that we can determine the expectation, say t, of the statistic

t(Z,R - TZ) when calculated using the correct T, that is, when calcu-
lated from responses R - TZ that have been adjusted so they are free of
a treatment effect. For instance, in an with a single stratum,
the rank sum statistic has expectation t = m(N + 1)/2 if the treatment
has no effect. This is true because, in the absence of a treatment effect, the
rank sum statistic is the sum of m scores randomly selected from N scores
whose mean is (N + 1)/2. In the same way, in a stratified experiment,
the stratified rank sum statistic has expectation t = L:ms (n s + 1) in
the absence of a treatment effect. In an experiment comprised of S pairs,
in the absep.ce of a treatment effect, the expectation of the signed rank
statistic is t = (S + 1)/4, since we expect to sum half of S scores which
average (S + 1)/2. In the absence of an effect, in an experiment a
single stratum, the in sample means (2.2) has expectation f = O.
In each of these cases, t may be determined without knowing T, so there is
a Hodges-Lehmann estimate.
Roughly the Hodges-Lehmann estimate is the solution f of

the equation t = t(Z, R - fZ). In other words, f is the value such that
the adjusted responses R - fZ appear to be entirely free of a treatment
effect, in the sense that the test statistic t(Z, R - fZ) exactly equals its
expectation in the absence of an effect.
If t(·, .) is an effect increasing statistic, as is true of all of the statistics

in §2.3, then t(Z,R- fZ) is monotone decreasing as a function of f with Z
and R fixed. This says: The larger the treatment effect fZ removed from
the observed responses R, the smaller the statistic becomes. This is useful
in solving t = t(Z, R-fZ). If a f has been tried such that t < t(Z, R-fZ),
!hen a larger r.- will tend to make t(Z, R - fZ) smaller, moving it toward
f. Similarly, if f > t(Z, R - fZ), then a smaller f is needed.
Problems arise immediately. For rank statistics, such as the rank sum

and the signed rank, t(Z, R - fZ) in discrete jumps as f is varied,
so there may be no value f such that f = t(Z, R - fZ). To see this, take
trivial case, a uniform experiment in one stratum, sample size N = 2, one
treated unit m = 1. Then the rank sum statistic is eithe..r 1 or 2 depending
upon which of the two units receive the treatment, but f = 1.5, so it is not
possible to find a f such that t = t(Z, R - fZ).
Not only may t = t(Z, R - fZ) have no solution f, but it may have

infinitely many solutions. If t(Z, R - fZ) varies in discrete jumps, it will
be constant for intervals of values of f.
Hodges and Lehmann resolve these problems in the following way. They

define the solution of an equation t = t(Z, R - fZ) as SOLVE{t = t(Z,R-
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TABLE 2.6. Computing a Hodges-Lehmann Estimate.
1" 4.9999 5 5.0001 5.9999 6 6.0001

t(Z, R - 1"Z) 20 19 18 18 17 15

iZ)} defined by

i SOLVE{l = t(Z, R - iZ)}
inf{1" : t> t(Z, R - iZ)} + sup{1" : t < t(Z, R - 1"Z)}

2

This defines the Hodges-Lehmann estimate. Roughly speaking, if there
is no exact solution, then average the smallest 1" that is too large and the
largest 1" that is too small.
Consider the small example in Table 2.5. Under the null hypothesis of no

effect, the rank sum statistic has expectation t =m(N+ 1)/2 = 4(8+1)/2 =
18, that is, half of the sum of all eight ranks, 36 = 1 + 2 + ... + 8. Table 2.6
gives values of t(Z, R - 1"Z) for several values of T. As noted, since t(-, .)
is effect increasing, in Table 2.6, t(Z, R - TZ) decreases in T. We want
as our estimate a value i such that 18 = t(Z, R - iZ), but the table
indicates that any value between 5 and 6 will do. As the table suggests,
inf{1" : t> t(Z,R - TZ)} = 6 and sup{1" : t < t(Z,R - 1"Z)} = 5, so the
Hodges-Lehmann estimate is i = (6 + 5)/2 = 5.5.
For particular test statistics, there are other ways of computing T. This is

true, for instance, for a single stratum using the rank sum test. In this case,
it may be shown that i is the median of the m(N - m) pairwise differences
formed by taking each of the m treated responses and subtracting each of
the N - m control responses.
The Hodges-Lehmann estimate T inherits properties from the test statis-

tic t(-, .). Consistency is one such property. Recall that a test is consistent
if the probability of rejecting each false hypothesis tends to one as the sam-
ple size increases. Recall that an estimate is consistent if the probability
that it is close to the true value tends to one as the sample size increases.
As one would expect, these ideas are interconnected. A test that rejects
incorrect values of T leads to an estimate that moves away from these in-
correct values. In other words, under mild conditions, consistent tests lead
to consistent Hodges-Lehmann estimates; see Maritz (1981, §1.4) for some
details.
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2.8 *More Complex Outcomes

2.8.1 *PaTtially Ordered Outcomes
So far, the outcome Rsi has been a number, possibly a continuous mea-
surement, possibly a binary event, possibly a discrete score, but always a
single number. However, for more complex responses, much of the earlier
discussion continues to apply with little or no change. The purpose of §2.8
is to discuss issues that arise with certain complex outcomes, including
multivariate responses and censored observations.
When the outcome Rsi is a single number, it is -clear what it means

to speak of a high or low response, and it is clear what it means to ask
whether responses are typically higher among treated units than among
controls. For more complex responses, it may happen that some responses
are higher than some others; and yet not every pair of possible responses
can be ordered. For example, unit 1 may have a more favorable outcome
than units 2 and 3, but units 2 and 3 may have different outcomes neither
of which can be described as entirely more favorable than the other. For
instance, patient. 1 may live longer and have a better quality of life than
patients 2 and 3, but patient 2 may outlive patient 3 though patient 3
had a better quality of life than patient 2. In this case, outcomes may be
partially ordered rather than totally ordered, an idea that is formalized in
a moment. Common examples are given in §2.8.2 and 2.8.3.
A partially ordered set or poset is a set A together with a relation ;S on

A such that three conditions hold:

(i) a;S a for all a E A;

(ii) a;S b and b;S a implies a = b for all a, bE Ai and

(iii) if a ;S b and b ;S c then a ;S c for all a, b, c E A.

There is strict inequality between a and b if a ;S b and a i= b. A poset A is
totally ordered if a ;S b or b;S a for every a, bE A. The real numbers with
conventional inequality $ are totally ordered. If A is partially ordered but
not totally ordered, then for some a, b E A, a i= b, neither a nor b is higher
than the other; that is, neither a ;S b nor b ;S a. Sections 2.8.2 and 2.8.3
discuss two common examples of partially ordered outcomes, namely, cen-
sored and multivariate outcomes. Following this, in §2.8.4, general methods
for partially ordered outcomes are discussed.

2.8.2 *Censored Outcomes
In some experiments, an outcome records the time to some event. In a clin-
ical trial, the outcome may be the time between a patient's entry into the
trial and the patient's death. In a psychological experiment, the outcome
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may be the time lapse between administration of a stimulus by the experi-
menter and the production of a response by an experimental subject. In a
study of remedial education, the outcome may be the time until a certain
level of proficiency in reading is reached.
Times may be censored in the sense that, when data analysis begins, the

event may not yet have occurred. The patient may be alive at the close of
the study. The stimulus may never elicit a response. The student may not
develop proficiency in reading during the period under study.
If the event occurs for a unit after, say, 3 months, the unit's response

is written 3. If the unit entered the study 3 months ago, if the event has
not yet occurred, and if the analysis is done today, then the unit's response
is written 3+ signifying that the event has not occurred in the initial 3
months.
Censored times are partially ordered. To see this, consider a simple il-

lustration. In a clinical trial, patient 1 died at 3 months, patient 2 died
at 12 months, and patient 3 entered the study 6 months ago and is alive
today yielding a survival of 6+ months. Then patient 1 had a shorter sur-
vival than patients 2 and 3, but it is not possible to say whether patient 2
survived longer than patient 3 because we do not know whether patient 3
will survive for a full year.
The set A of censored survival times contains the nonnegative real num-

bers together with the nonnegative real numbers with a plus appended.
Define the partial order :s on A as follows: if a and b are nonnegative real
numbers, then:

(i) a:S b if and only if a ::; b;

(ii) a:S b+ if and only if a b; and

(iii) a:S a and a+ :s a+.
Here, (i) indicates that "a" and "b" are both deaths and "a" died first. In
(ii), "a" died before "b" was censored, so "b" certainly outlived "a." Of
course, (iii) is just the case of equality-every censored time is equal to
itself, and so is less than or equal to itself. It is easy to check that this is
indeed a partial order, and that strict inequality indicates certainty about
who died first.

2.8.3 *Multivariate Outcomes and Other Partially Ordered
Outcomes

Quite often, a single number is not enough to describe the outcome for a
unit. In an educational intervention, there may be test scores in several
areas, such as reading and mathematics. In a clinical trial, the outcome
may involve both survival and quality of life. A multivariate response is
a p-tuple of outcomes describing an individual. If the p components are
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numbers, then the multivariate response inherits a partial order as follows:
(al,.·. ,ap);S (bl , ... ,bp) if and only if at:::; bt ,a2:::; b2, ... , and ap :::; bp.
It is easy to check that this defines a partial order. As an example, if the
outcome is the 2-tuple consisting of a reading score and a mathematics
score, then one student has a higher multivariate response than another
only if the first student did at least as well as the second student on both
tests.
In fact, the components of the p-tuple need oot be numbers-rather

they may be any partially ordered outcomes. In the same way, the p-tuple
inherits a partial order from the partial orders of individual outcomes. For
instance, the outcome might be a 2-tuple consisting of a censored survival
time and a number measuring quality of life. The censored survival times
are partially but not totally ordered. In this case, a patient who died early
with a poor quality of life would have a lower outcome than a patient who
was censored late with a good quality of life.
Multivm-iate responses may be given other partial orders appropriate

to particular contexts. Here is one that gives greatest emphasis to the
first coordinate and about equal emphasis to the other two: (aI, a2, a3) ;S
(b l ,b2,b3) if al :::; bl or if {al = bl and a2 :::; b2 and a3 :::; b3}. In an
educational setting, this might say that a student who graduates had a
better outcome than one who did not regardless of test scores, but among
those who graduate, one student is better than another only if both reading
and math scores are as good or better.

2.8.4 *A Test Statistic for Partially Ordered Outcomes
The task is to test the null hypothesis of no treatment effect against the
alternative that treated units tend to have higher responses than controls
in the sense of a partial order ;S on the outcomes. For this purpose, define
indicators Lsij for s = I, ... ,S, i = I, ... ,ns, j = 1, ... ,ns, as follows:

Hif Rsj ;S R si with Rsi =1= Rsj,
if Rsi ;S Rsj with R si =1= R sj ,
otherwise.

(2.7)

In words, Lsij compares the ith and jth units in stratum s, and Lsij is 1
if the ith is strictly greater than the jth, is -1 if the ith is strictly smaller
than the jth, and is zero in all other cases. The statistic is

S noS n,s

t(Z,R) = LLLZsi(l- Zsj)Lsij '
s=1 i=1 j=1

(2.8)

Consider the statistic in detail. The term Zsi(l - Zsj)Lsij equals 1 if, in
stratum s, the ith unit received the treatment, the jth uhit received the
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control, and these two units had unequal responses with the treated unit
having a higher response, Rsj ;S R si ' Similarly, Zsi(l- Zsj)Lsij equals -1
if, in stratum 5, the ith unit is treated, the jth is a control, and the control
had the higher response, R si ;S Rsj ' In all other cases, Zsi(1 - Zsj)Lsij
equals zero. So the test statistic is the number of comparisons of treated
and control units in the same stratum in which the treated unit had the
higher response minus the number in which the control unit had the higher
response.
This statistic generalizes several familiar statistics. If the outcome is a

single number and the partial order ;S is ordinary inequality::;, then (2.8) is
equivalent to the Mann-Whitney (1947) statistic and the Wilcoxon (1945)
rank sum statistic. If the outcome is censored and ;S is the partial order in
§2.8.2, then the statistic is Gehan's (1965) statistic.
A device due to Mantel (1967) shows that (2.8) is a sum statistic. The

steps are as follows. First note that, for any subset B of {I, 2, ... Ins},

LLLsij =0
iEBjEB

since L..ij and Lsji both appear in the sum, with Lsij = -Lsji , and they
cancel. Using this fact with B = {i : 1 ::; i ::; ns with Zsi = I} yields

n s n,':1

0= LLLsij = LLZSiZSjLsij,
iEB JEB i=1 j=1

which permits the test statistic (2.8) to be rewritten as the sum statistic
S n 8 n.') S n ...

t(Z,R) = L L Zsi L LSij = L L Zsiqsi
s=1 i=1 j=1 s=1 i=1

n s

with qsi = L L.'lij.
j=l

-

As a result, the expectation and variance of the test statistic under the null
hypothesis are given by Proposition 2. In fact, in that Proposition, iis = 0
for each 5 using (2.9).
The score qsi has an interpretation. It is the number of units in stratum

s with outcomes less than unit i minus the number with outcomes greater
than i. The score q.. i is large if unit i has a response larger than that
of most units in stratum 5. For instance, in Gehan's statistic for censored
outcomes, the score q..i is the number of patients in stratum s who definitely
died before patient i minus the number who definitely died after patient i.

2.8.5 *Effect Increasing Statistics, Positive Effects, Larger
Effects

In §2.4 and 2.5, three terms were discussed, namely, effect increasing statis-
tics, positive effects, and larger effects. These terms apply to partially or-
dered outcomes with virtually no change, as shown in a moment. In each
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case, the definitions in §2.4 and 2.5 are the special case of the definitions
in this section with the partial order :s given by ordinary inequality S of
real numbers.
Let rand r* be two possible values of the N-tuple of partially ordered

outcomes. If rsi :s r;i for every treated unit and r;i :s rsi for every control
unit, then the treated and control groups appear farther apart for outcome
r* than for outcome r. A test statistic t(-,·) is effect increasing if t(z, r) S
t(z, r*) whenever r and r* are two possible values of the response such that
rsi :s r;i if Zsi = 1 and r;i :s rsi if Zsi = 0 for all s, i. In words, the statistic
is larger when the outcomes in treated and control groups are farther apart.
The statistic in §2.8.4 is effect increasing; see Problem 6.
If there is no interference between units, then (rT' rc) is a positive effect

if rT :f- rc and rCsi :s rTsi for every s, i. In the case of censored survival
times, this would mean that each patient would definitely survive at least
as long under the treatment as under the control, or else would continue to
be censored at the same time due to the end of the study. An effect (rT' ra)
is a larger effect than (rT' rc) if rTsi :s rTsi and rasi :s rCsi, for all s, i,
that is, if the treated responses are higher and the control responses are
lower.
The following proposition is the extension of Proposition 4 to partially

ordered responses. Again, the proof is given in the appendix, §2.9.

Proposition 5 In a randomized experiment, a test statistic that is ef-
fect increasing yields an unbiased test of no effect against the alternative
of a positive effect, and if (rT, r a ) is a larger effect than (rT' rc) then
t(Z,R*) 2 t(Z,R).

2.9 *Appendix: Effect Increasing Tests Under
Alternatives

This appendix proves Propositions 4 and 5 which describe the behavior of
effect increasing test statistics under the alternative hypotheses of positive
effects or larger effects. It may be of interest to contrast these propositions
with a result in Lehmann (1959, §5.8, Lemma 2) which is similar in spirit
though quite different in detail. It suffices to prove Proposition 5 since
Proposition 4 is the special case of the former in which the partial order is
ordinary inequality. The proof depends on the following lemma.

Lemma 6 Let t(-,·) be effect increasing. If (rT, rc) is a positive effect,
then t(z, r z ) 2 t(z, ra) for all z, a E !l. If (rT' ra) is a larger effect than
(rT' rc), then t(z, r;) 2 t(z, r z ) for all z E !l.

Proof of Lemma. Let (rT, rc) be a positive effect, let z, a E !l, and
consider r z and ra· If Zsi = 1, then rsiz = rTsi while rsia may equal either
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2.10.1 *Outline and Motivation: The Special Structure ofn

2.10 *Appendix: The Set of Treatment
Assignments

for a E 0 by the lemma.r a ) T] prob(Z = z)
zEn

prob{t(Z, R) T}
= r z ) T] prob(Z = z)
zEO

The set 0 of treatment assignments plays an important role both in ran-
domized experiments and in the discussion of observational studies in later
chapters. This set n possess a special structure, first noted by Savage
(1964). Using this structure, a single theorem may refer to large classes
of test statistics and to all of the simple designs, including matched pairs,
matching with multiple controls, two-group comparisons, and stratified
comparisons. The purpose of this section is to describe the special structure
of O. Appendices in later chapters refer back to this appendix.

In other words, the chance that the test statistic t(Z, R) exceeds any
number T is at least as great under the alternative hypothesis of a positive
effect as under the null hypothesis of no effect, proving unbiasedness. •

Proof of Proposition 5. The lemma directly shows that if (rr, re) is a
larger effect than (rT, rc), then t(Z, R*) t(Z, R). To prove unbiasedness,
let Z be randomly selected from n where prob(Z = z) is known but need
not be uniform. If the random treatment assignment turns out to be Z = a,
then the observed outcome is R = r a . If the null hypothesis were true, if
the treatment had no effect, the observed response would be the same ra
no matter how treatments were assigned, that is, the observed response
would be R = r a no matter what value Z assumed. If the null hypothesis
were false and the treatment had a positive effect, the observed response
would vary depending upon the treatment assignment, R = r z if Z z.
For any fixed number T

rTsi or rCsi depending on asi, but in either case rsia:S rsiz since (rT,rc)
is a positive effect. Similarly, if Zsi = 0, then rsiz = rCsi :s rsia. Since t(·,·)
is effect increasing, this implies t(z, r z ) t(z, r a ), proving the first part of
the lemma.
Now let z E 0, let (rr,re ) be a larger effect than (rT,rc), and consider

r: and r z · If Zsi = 1, then rsiz = TTsi :s rrsi = r;iz' If Zsi = 0, then
r;iz = resi :s rCsi = rsiz' Hence t(z, r:) t(z, r z ) since t(·,·) is effect
increasing, completing the proof. •
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Savage (1964) observed that the set n is a finite distributive lattice. This
is useful because there are tidy theorems about probability distributions
on a finite distributive lattice, including the FKG inequality and Holley's
inequality. This section:

(i) offers a little motivation;

(ii) reviews the definition of a distributive lattice;

(iii) shows that n is indeed such a lattice; and
(iv) discusses the relevant probability inequalities.

The material in this appendix may be read without previous experience
with lattices.
For motivation, consider a simple case. There is a single stratum, S = 1,

so the s subscript is dropped in this example, and there are n = 4 units
of which m = 2 receive the treatment. Then n contains = 6 possible
treatment assignments. Assume for this motivating example that the null
hypothesis of no treatment effect holds, and renumber the four subjects so
their observed responses are in decreasing order, rl 2: rz 2: T3 2: r4. Since
no quantity we calculate ever depends on the numbering of subjects, this
renumbering changes nothing, but it is notationally convenient. The six
possible treatment assignments appear in (2.10).

1100
T

1010
/ ""0110 1001 (2.10)

"" /
0101
T

001l

The treatment assignment z = (1,1,0,0) at the top in (2.10) is the one
that would suggest the largest positive treatment effect, since this assign-
ment places the two largest responses, rl and rz, in the treated group. The
assignment below this, namely, Z = (1,0,1,0) would suggest a smaller treat-
ment effect than (1, 1, 0, 0), since r3 has replaced rz, but it would suggest
a larger treatment effect than any other assignment. The assignments (0,
1, 1,0) and (1,0,0, 1) are not directly comparable to each other, since the
latter places the largest and smallest responses in the treated group while
the former places the two middle responses in the treated group; however,
both are lower than (1, 0, 1,0) and both are higher than (0, 1,0, 1).
Consider the behavior of a test statistic t(z, r) as we move through (2.10).

Suppose, for instance, there are no ties among the responses, rl > rz >
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T3 > T4, and t(z, r) is the rank sum statistic. Then t(z, r) = 7 for z = 1100,
t(z, r) = 6 for 1010, t(z, r) = 5 for both 1001 and 0110, t(z, r) = 4 for 0101,
and t(z, r) = 3 for 0011, so t(z, r) increases steadily along upward paths
in (2.10). If, instead, t(z, r) were the difference between the mean response
in treated and control groups, it would again be increasing along upward
paths.
Suppose, instead, that T2 and T3 were tied, so Tl > T2 = T3 > T4. In this

case, the rank sum statistic would give average rank 2.5 to both T2 and
T3, so moving from 1100 to 1010 would not change t(z, r). Notice, however,
that even with ties, t(z, r) is monotone increasing (i.e., nondecreasing) along
upward paths.
Actually, the order in (2.10) applies to many statistics whether ties are

present or not. If t(z, r) is any arrangement-increasing statistic, then t(z, r)
is monotone-increasing on upward paths in (2.10). Most reasonable statis-
tics will assign a higher value to 1100 than to 1010, but reasonable statistics
can differ in how they order assignments that are not comparable like 1001
and 0110.
Take a look at a second example, the case of S = 2 matched pairs,

so ns = 2 and m s = 1 for s = 1,2. Then n contains 22 = 4 treatment
assignments z = (Zll' Z12, Z21, Z22). Again, assume the null hypothesis of no
treatment effect and renumber the units in each pair so that in the first
pair .Tll T12, and in the second pair T21 T22. The set n appears in
(2.11).

/
1001

""

1010

0101

""0110
/

(2.11)

The assignment z in (2.11) suggesting the largest positive treatment
effect is z = (1,0,1,0) since in both pairs the treated unit had a higher
response than the control. For z = 1001 and z = 0110, the treated unit
had the higher response in one pair and the lower response in the other.
In the assignment z = 0101 the treated unit had a lower response than the
control in both pairs.
Once again, common statistics are monotone-increasing along upward

paths in (2.11). For instance, this is true of the signed rank statistic, which
equals zero at the bottom of (2.11), equals one or two in the middle, and
equals three at the top. Indeed, all arrangement-increasing functions are
monotone-increasing along upward paths in (2.11).
What does all this suggest? There are certain treatment assignments

zEn that are higher than others, and this is true without reference to the
nature of the response r or the specific test statistic t(z, r). The responses
might be continuous or they might be discrete scores or they might be
binary. The test statistic might be the signed rank statistic or the McNemar
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statistic. In all these cases, z = 1010 is higher than z = 1001 in (2.11).
Certain statements about treatment assignments zEn should be true
generally, without reference to the specific nature of the outcome or the
test statistic.

2.10.2 *A Brief Review of Lattices
Briefly, a lattice is a partially ordered set in which each pair of elements
has a greatest lower bound and a least upper bound. This terminology
is discussed formally in a moment, but first consider what this means in
(2.10). A point z in (2.10) is below another z· if there is a path up from
z to z·j for instance, 0110 is below 1100. The points 1001 and 0110 are
not comparable---:-there is not a path up from one to the other-so n is
partially but not totally ordered. The least upper bound of 0110 and 1001
is 1010, for it is the smallest element above both of them. The least upper
bound of 1010 and 1100 is 1100. A nice introduction to lattices is given by
MacLane and Birkoff (1988).
A set n is partially ordered by a relation :s if for all z, z·, Z·· E n:
(i) z:S Zj

(ii) z:S Z· and z· :s z implies z = z·j and
(iii) z:S z· and z· :s z·· implies z :s z··.
An upper bound for z, z· E n is an element z·· such that z :s z·· and
z :s z... A least upper bound z.. for z, z· is an upper bound that is below
all other upper bounds for z, z·j that is, if z··· is any upper bound for z, z·,
then z·· :s z***. If a least upper bound for z, z* exists, then it is unique by
(ii). Lower bound and greatest lower bound are defined similarly. A lattice
is a partially ordered set n in which every pair z, z* of elements has a least
upper bound, written z V z*, and a greatest lower bound, written z 1\ z* .
A lattice n is finite if the set n contains only finitely many elements. In
(2.10), both 1010 and 1100 are upper bounds for the pair 1001 and 0110,
but the least upper bound is 1001 V0110 = 1010.
The partial order :s and the operations V and 1\ are tied together by the

following relationship: z :s z* if and only if z V z* = z* and z 1\ z* = z. In
fact, using this relationship, a lattice may be defined beginning with the
operations V and 1\ rather than beginning with the partial order :S, that is,
defining the partial order in terms of the operations. The following theorem
is well knownj see MacLane and Birkoff (1988, §XIV, 2) for proof.

Theorem 7 A set n with operations V and 1\ is a lattice if and only if for
all z, z*, z.. E n:
L1. z Vz = z and z 1\ z = z;
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L2. z V z* = z* V z and z /\ z* = z* /\ z;

L4. z /\ (z V z*-) = Z V (z /\ z*) = z.

for all z, z*, z** E f2.

43
i
42

/' "'"41 32 (2.12)

"'" /'
31
i
21

ZV(z* J\z**) = (ZVz*)/\(ZVz**)

2.10.3 *The Set of Treatment Assignments Is a Distributive
Lattice

If there are ties among the responses in a stratum, then c is no longer
a collection of ranks, because c distinguishes units with the same tied re-
sponse. In the end, this is not a problem. The lattice order makes a few
distinctions among treatment assignments that statistical procedures will

L3. z V (z* V z**) = (z V z*) V z** and z /\ (z* J\ ZOO) = (z J\ z*) /\ z**; and

Here, L2 and L3 are the commutative and associate laws, Ll is called
idempotence, and L4 is called absorption. A lattice is distributive if the
distributive law also holds,

This section gives Savage's (1964) demonstration that f2 is a distributive
lattice. With each N-dimensional Z E f2, associate a vector c of dimension
L ms , as follows. The vector c is made up of S pieces, where piece s has
m s coordinates. It is suggestive and almost accurate to say that c contains
the ranks of the responses of treated units, each stratum being ranked
separately, the ranks being arranged in decreasing order in each stratum.
This would be exactly true if there were no ties, but it is not exactly true
in the case of ties. Here is the exact definition, with or without ties. If
Zsl = 0, Zs2 = 0,.:. ,Zs,i-l = 0, Zsi = 1, then Csl = n s - i + 1. Continuing,
if ZS,i+l = 0, .•. ,Zs,j-l = 0, Zsj = 1, then Cs2 = n s - j + 1, and so on.
In terms of the c, (2.10) becomes (2.12), and (2.11) becomes (2.13). For
instance, in (2.10), z = 1100 becomes c = 43, since the first 1 in z appears
in position i = 1, so n - i +1 = 4 -1 + 1 = 4 and the second 1 in z appears
in position j = 2, so n - j + 1 == 4 - 2+ 1 = 3.
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ignore.

/
21

"
22

11

"12/
(2.13)

It is readily checked that each z has one and only one corresponding
e. Given z, z* E 0, with corresponding e and e*, the operations V and 1\
are defined as follows. Define e V e* and e 1\ e* as the vectors containing,
respectively, max(csi, C;i) and min(csi, C;i)' Define z V z* and z 1\ z* as the
elements of 0 corresponding to eV e* and e 1\ e*. It is readily checked that
this definition makes sense, that is, that eVe* and el\e* always correspond
to elements of O. For instance, in (2.10), z = 0110 and z* = 1001 correspond
to e = 32 and e* = 41, so e V e* = 42 and e 1\ e* = 31, so z V z* = 1010
and z 1\ z* = OlD1, as is consistent with (2.10). Notice carefully that the
coordinate (8, i) of z V z* is not generally equal to max(zsi, Z;i)'
To show that 0 is a lattice with these operations, one needs to check

L1 to L4 in Theorem 7, but L1 to L3 hold trivially for max(Csi, C;i) and
min(csi, C;i)' To show zl\(zVz*) == Z in L4, it suffices to show el\(eVe*) = e.
If Csi 2 c;i' then min{csi' max(csi, c;i)} = min(csi, Csi) = Csi, while if Csi <
C;i' then min{csi,max(csi,c;i)} = min(csi,c;;) = Csi, so el\ (eve*) = e
as required. The second part of L4 is proved in the same way. So 0 is a
lattice.
More than this, 0 is a distributive lattice. As proof, it suffices to show

e V (e* 1\ e**) = (e V e*) 1\ (e V e**), that is, to show

max{CSi' min(c;i' c;;)} = min{max(csi, C;i)' max(csi, c;;)}.
There are two cases. If Csi 2 min(c;i,c;n, then max{csi,min(c;i'c;;)} =
Csi, but also Csi is less than or equal to both max(csi, C;i) and max(csi, c;n
yet it equals one of them, so

min{max(csi, C;i)' max(csi, c;;)} = Csi·

On the other hand, if Csi < min(c;i' c;n, then

{ . (* **)} . (* **)max Csi, min csi' csi = min csi ' csi ,

but max(csi,C;i) = C;i' and max(csi,C;n = c;;, so

min{max(Csi, c;;), max(Csi, c;;)} = min(C;i' c;n,

as required to complete the proof.



2.10 *Appendix: The Set of Treatment Assignments 61

2.10.4 *Inequalities for Probability Distributions on a Lattice
This section discusses two inequalities for probability distributions on a fi-
nite distributive lattice, namely, the FKG inequality and Holley's inequal-
ity. These inequalities are the principal tool that makes use of the lattice
properties of D. The original proofs of these inequalities are somewhat
involved, but Ahlswede and Daykin (1978) developed a simpler proof in-
volving nothing more than elementary probability. Their proof is nicely
presented in several recent texts (Anderson 1987, §6, Bollobas, 1986, §19),
to which the reader may refer.
A real-valued function on D, f : D lR is isotonic if z ,S z* im-

plies f(z) 5. f(z*). Throughout this appendix, r has been sorted into or-
der within each stratum, rsi rs,i+l for each s, i. With this order, the
arrangement-increasing statistics t(z, r) are some of the isotonic functions
on D. Actually, the arrangementcincreasing statistics are the interesting
isotonic functions, for they are the isotonic functions that are unchanged
by interchanging tied responses in the same stratum. If there are ties, that
is, if rsi = rs,i+l for some sand i, then there are isotonic functions that
are not arrangement-increasing, specifically functions that increase when
Zsi = 0, Zs,i+l = 1 is replaced by Zsi = 1, Zs,i+l = 0; however, these func-
tionsare not interesting as test statistics t(z, r) because they distinguish
between people who gave identical responses. From a practical point of
view, the important point is that a property of all isotonic functions on D
is automatically a property of all arrangement-increasing functions, and all
of the statistics in §2.4.3 are arrangement-increasing.
The first inequality is due to Fortuin, Kasteleyn, and Ginibre (1971).

Theorem 8 (The FKG Inequality) Let f(·) and g(.) be isotonic func-
tions on a finite distributive lattice D. If a random element Z ofD is selected
by a probability distribution satisfying

prob(Z = z V z*) . prob(Z = z 1\ z*) prob(Z = z) . prob(Z = z*)
for all z, z* E D,

then

cov{J(Z), g(Z)} 0.

For example, randomization gives equal probabilities to all elements of
D, so the randomization distribution satisfies the condition for the FKG
inequality. Hence; under the null hypothesis of no effect in a randomized
experiment, any two arrangement-increasing statistics have a nonnegative
correlation.
The next theorem is due to Holley (1974).

Theorem 9 (Holley's Inequality) Let f(·) be an isotonic function on a
finite distributive lattice D. If Z and Z are random elements of D selected
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by two probability distributions satisfying

prob(Z = z V z*) . prob(Z = z 1\ z*) 2: prob(Z = z) . prob(Z = z*)
for all z, z* En,

then

E{f(Z)} E{f(Z)}.

In other words, the premise of Holley's inequality is a sufficient condi-
tion for Z to be stochastically larger than Z, in the sense that for every
arrangement-increasing function f(·), the random variable f(Z) has higher
expectation than f(Z). Holley's inequality helps later in comparing a non-
random assignment of treatments to a random assignment. A related result
is given by Krieger arid Rosenbaum (1994). Literature related to Holley's
inequality is reviewed in Rosenbaum (1999).

2.10.5 *An Identity in n
There is a useful identity in the set n of treatment assignments. The identity
links V and 1\ to the addition of vectors, and therefore it is useful in verifying
the conditions of the FKG inequality and Holley's inequality. It is true for
this lattice, but not true generally for all lattices.

Lemma 10 For all z, z* En,
z V z* + z 1\ z* = z + z*.

Proof. Fix a coordinate (8, i), so the task is to show Z.i+z;i = Zl\3i+Zy.i,
where ZI\.i and Zy.i are the (8, i) coordinates of zl\z· and zVz*, respectively.
Let c and c* correspond with z and z* , respectively. There are three cases,
depending upon the value of Z.i + z;i'
1. If Z.i + Z;i = 0, then c.j i- n. - i + 1 and c:j =I- n. - i + 1 for

j = 1, ... ,m s, so max (c.j, C;j) =I- n s - i + 1 and min (c.j, C;j) i- n s - i + 1
for j = 1, ... ,m., so ZI\.i + ZYsi = 0, as required.
2. If Zsi + Z;i = 2, then there is a j and a k such that Csj = n s - i + 1

and c;k = n. - i + 1. If j = k, then max (CSj,c: j ) = n s - i + 1 and
min (CSj, c:j) = n. - i + 1, so Zl\si = 1 and ZYsi = 1, so that Zl\si +ZYsi = 2,
as required. If j < k, then n s - i + 1 = Csj > Csk and c:j > C;k = n. - i + 1,
so min (csj, c:j ) = Csj = n s - i + 1 and max (Csk, c;k) = c:k = n s - i + 1, so
Zl\si = 1 and ZYsi = 1, so that Zl\si + ZYsi = 2, as required. The case j > k
is similar.
3. If Zsi = 1 and z;i = 0, so Zsi + Z;i = 1, then there is a j such that

Csj = n s - i + 1 but c;k =I- n s - i + 1 for k = 1, ... ,m s. In this case, either
n. - i + 1 = max (csj, C;j) or n s - i + 1 = min (csj, C;j) but not both, and
moreover, n s - i + 1 =I- max (Csk, c;k) and n s - i + 1 =I- min (Csk, c;k) for all
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k 1= j, so Zl\si + ZVsi = 1, as required. The case Zsi = 0 and Z;i = 1 is
similar. _

If there were no ties, so c and c* are ranks, then Lemma 10 has the
following interpretation. Within each stratum, the operations V and /\ take
the ranks in c and c* and apportion them in forming c V c* and c /\ c*, but
in this process they do not create or delete ranks that appear in c and c*.

2.11 Bibliographic Notes

Fisher is usually credited with the invention of randomized experiments.
See, in particular, his important and influential book, The Design of Exper-
iments, first published in 1935. Randomization is discussed in many articles
and textbooks. In particular, see Kempthorne (1952), Cox (1958a, §5) and
Cox and Reid (2000) for discussions of randomization in experimental de-
sign, and see Lehmann (1975) and Maritz (1981) for discussions of its role
in nonparametrics. Mantel's (1963) paper was significant not just for the
method he proposed, but also for its strengthening of the link between
nonparametric methods and contingency table methods. The model for a
treatment effect in §2.5.2 in which each unit has two potential responses,
one under treatment and the other under control, has a long history. In an
article first published in Polish and recently translated into English, Ney-
man (1923) used it to study the behavior of statistical tests under random
assignment of treatments. Related work was done by Welch (1937), Wilk
(1955), Cox (1958b, §5), and Robinson (1973), among others. Rubin (1974,
1977) first used the model in observational studies. In particular, he dis-
cussed the conditions under which matching, stratification, and covariance
adjustment all estimate the same treatment effect. See also Hamilton (1979)
and Holland (1986). Arrangement-increasing functions have been studied
under various names by Eaton (1967), Hollander, Proshan, and Sethuraman
(1977), and Marshall and Olkin (1979, §6F); see also Savage (1957). Al-
though the Hodges-Lehmann (1963) estimates are often derived from rank
tests, these R-estimates are very closely related to other families of esti-
mates based on order statistics, L-estimates, or based on solving equations,
M-estimates; see Gastwirth (1966) and Jureckova (1984). An attraction
of R-estimates over L-estimates or M-estimates is that R-estimates have
associated tests and confidence intervals that are exact, nonparametric,
and explicitly linked to randomization in experiments. Sign-score statis-
tics are discussed in Rosenbaum (1988) in connection with sensitivity anal-
ysis where these statistics permit certain simplifications. The discussion of
complex outcomes in §2.8 draws from Mann and Whitney (1947), Gehan
(1965), Mantel (1967), and Rosenbaum (1991,1994). The material in §2.1O
uses ideas from Savage (1964) and Rosenbaum (1989, 1995). The results in
§2.1O concern permutations of vectors with binary coordinates, but some
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of these results extend to permutations of vectors with real coordinates;
see Krieger and Rosenbaum (1994).

2.12 Problems
1. The surprising power of the Lady tasting tea. In §2.2, what is the power
of the test? Specifically, suppose the Lady can distinguish milk first
from tea first, and is always accurate. What is the power of a one-
sided, 0.05 level test? Which 2 x 2 tables of the form Table 2.2 lead
to rejection at the 0.05 level? If the Lady can distinguish, what is
the chance of a table that leads to rejection?

2. Interference between units with longitudinal data. Suppose that there
are S people, S = 1,. .. ,S, and person S is measured once a week for
n s consecutive weeks, i = 1, ... ,n s . Here, one unit (s, i) is one person
in one week. For person s, a fixed number, ms , of weeks are picked at
random, independently for different people, and person s is treated in
those weeks. Write Zsi = 1 if person s is treated in week i, Zsi = 0
otherwise, so m s = Zsi' The observed response of person s in
week i is R si , which may be affected by the current treatment Zsi
and previous treatments, Zsj, j = 1, ... ,i. In addition, person s has
a pretreatment baseline response, Rso , which is unaffected by treat-
ment, and so is fixed. Consider the model R si - Rs,i-l = T/si + tiZsi
for i = 1, ... ,ns , so the treatment produces additive gains, where
ti and the T/si are unknown fixed parameters. Show that this model
violates the condition of "no interference between units" in §2.5.2.
Let T = t (Z, R) be the stratified rank sum statistic, applied to the
changes, R si - Rs,i-l, so the n s changes for person s are ranked from
1 to n s and T is the sum of the ranks for the L m s treated weeks.
Under the null hypothesis, Ho : ti = 0, what is the randomization
distribution of T? How does it compare to the usual randomiza-
tion distribution of T of the stratified rank test? How could you use
the randomization distribution of T when ti = 0 to test the general
hypothesis Ho : ti = tio? (Hint: Think about adjusted responses,
R si - Rs,i-l - tioZsd How could you use the randomization distri-
bution of T when ti = 0 to build a confidence interval for ti? Does
interference between units preclude randomization inference?

3. Proof of Proposition 1. Let A and B be two finite, nonempty, disjoint
sets, and let A x B be the set of all ordered pairs (a, b) with a E A
and b E B. If (a, b) is picked at random from A x B, with each
element of A x B having the same probability, show that a and b are
independent. Use this to prove Proposition 1 for S = 2. Then use it
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again to show that if Proposition 1 is true for 5, then it is also true
for 5 + 1.

4. Proof of Proposition 2. Prove Proposition 2. (Hint: Why does

(
S n. ) S (n. )

var t; Zsiqsi = var t; Zsiqsi ?

Why does

var (t ZSiqSi) = var{t Zsi (qsi - qs)} ?
>=1 >=1

Remember qsi - qs is fixed. What is E (Zsi)? What is

What is E(ZsiZSj)? Be careful about i = j and i ¥- j.)
5. Different statistics that yield the same randomization test. Let f (-) be a
strictly increasing function, so x < y implies f (x) < f (y). Show that
a test that rejects at level Q when t (Z, R) 2: k is exactly the same
test as the test that rejects when f {t (Z,R)} 2: f (k). In a uniform
randomized experiment with a single stratum, 5 = 1, dropping the s
subscript, show that a randomization test of no treatment effect based
on the total in the treated group, L ZiR;., is exactly the same test
as a randomization test based on the difference between the treated
and control group means,

t (Z; R) = L ZiR;. _ L (1 - Zi) R;. .
m n-m

In a uniform randomized experiment with a single stratum, 5 = 1,
what is the Hodges-Lehmann estimate of an additive treatment ef-
fect, rTi = rCi + T obtained from taking t (Z,R) to be the difference
between the treated and control group means?

6. An effect increasing statistic with partially ordered responses. Show that
the statistic (2.8) is effect increasing. (Hint: Consider two response
vectors, rand r*, and the corresponding indicators, L sij and L:ij .)

7. Metaphysics. Section 2.5.3 discussed the distribution of observable
quantities (Zsi, Rsi ) in a uniform 'randomized experiment under the
model of an additive treatment effect, rTsi = rCsi + T. Because
(rTsi, rCsi) is not jointly observed, one sees only Rsi = rTsi if Zsi = 1
for a treated subject, or else one sees Rsi = rCsi if Zsi = 0 for a



66 2. Randomized Experiments

control subject. Consider the case of a single stratum, S = I, drop-
ping the subscript s, and recall that, in a completely randomized
experiment, the observable consequence of the additive effect model,
rTi = rCi + T, is that the distribution of treated and control re-
sponses have the same shape and dispersion, but different locations,
so the treated distribution is shifted by T. Does the additive model
rTsi = rCsi + T have content beyond its implications for observable
distributions? Keep in mind that this is a problem in metaphysics,
not statistics, so perhaps there is an answer, perhaps not. Hint: It
is reasonable to ask of a question whether it is a reasonable ques-
tion to ask. What does the phrase "content beyond" mean in this
question? If "content beyond" were replaced by "observable conse-
quences," what becomes of the question? If "content beyond" were
replaced by "a mathematical form different from," what becomes of
the question? In parallel, Wittgenstein (1958, #47, p22-23) writes:

To the philosophical question: "Is the visual image of this
tree composite, and what are its component parts?" the correct
answer is "That depends upon what you understand by 'com-
posite'." (And that is of course not an answer but a rejection
of the question.)
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