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in the alphabet is associated with the characteristic of interest. However, systematic
sampling is not the same as simple random sampling; it does not have the property
that every possible group of n units has the same probability of being the sample. In
the preceding example, it is impossible to have students 345 and 346 both appear in
the sample. Systematic sampling is technically a form of cluster sampling, as will be
discussed in Chapter 5.

Most of the time, a systematic sample gives results comparable to those of an
SRS, and SRS methods can be used in the analysis. If the population is in random
order, the systematic sample will be much like an SRS. The population itself can be
thought of as being mixed. In the quote at the beginning of the chapter, Sorensen
reports that President Kennedy used to read a systematic sample of letters written to
him at the White House. This systematic sample most likely behaved much like a
random sample. Note that Kennedy was well aware that the letters he read, although
representative of letters written to the White House, were not at all representative of
public opinion.

Systematic sampling does not necessarily give a representative sample, though,
if the listing of population units is in some periodic or cyclical order. If male and
female names alternate in the list, for example, and k is even, the systematic sample
will contain either all men or all women-this cannot be considered a representative
sample. In ecological surveys done on agricultural land, a ridge-and-fuITow topogra-
phy may be present that would lead to a periodic pattern of vegetation. If a systematic
sampling scheme follows the same cycle, the sample will not behave like an SRS.

On the other hand, some populations are in increasing or decreasing order. A list
of accounts receivable may be ordered from largest amount to smallest amount. In
this case, estimates from the systematic sample may have smaller (but unestimable)
variance than comparable estimates from the SRS. A systematic sample from an
ordered list of accounts receivable is forced to contain some large amounts and some
small amounts. It is possible for an SRS to contain all small amounts or all large
amounts, so there may be more variability among the sample means of all possible
SRSs than there is among the sample means of all possible systematic samples.

In systematic sampling, we must still have a sampling frame and be careful when
defining the target population. Sampling every 20th student to enter the library will
not give a representative sample of the student body. Sampling every 10th person
exiting an airplane, though, will probably give a representative sample of the persons
on that flight. The sampling frame for the airplane passengers is not written down,
but it exists all the same.

2.7
Randomization Theory Results for Simple
Random Sampling*l

In this section we show that y is an unbiased estimator ofYu: Yu is the average of all
possible values of ys if we could examine all possible SRSs S that could be chosen.
We also calculate the variance of ygiven in Equation (2.7) and show that the estimator
in Equation (2.9) is unbiased over repeated sampling.

IAn asterisk (*) indicates a section, chapter, or exercise that requires more mathematical background.
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No distributional assumptions are made about the Yi 's in order to ascertain that y isunbiased for estimating Yu. We do not, for instance, assume that the Yi 's are normallydistributed with mean J-L. In the randomization theory (also called design-based)approach to sampling, the y/s are considered to be fixed but unknown numbers-any probabilities used arise from the probabilities of selecting units to be in thesample. The randomization theory approach provides a nonparametric approachto inference-we need not make any assumptions about the distribution of randomvariables.
Let's see how the randomization theory works for deriving properties of the samplemean in simple random sampling. As done in Cornfield (1944), define

Then
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The Zi'S are the only random variables in the above equation because, according torandomization theory, the Yi'S are fixed quantities. When we choose an SRS of nunits out of the N units in the population, {Z1, ... , ZN} are identically distributedBernoulli random variables with

nJri = P(Zi = 1) = P(select unit i in sample) = N' (2.18)

The probability in (2.18) follows from the definition of an SRS. To see this, note thatif unit i is in the sample, then the other n - 1 units in the sample must be chosen from
the other N - I units in the population. A total of ( possible samples of size
n - 1 may be drawn from a population of size N - 1, so

and

number of samples including unit iP(Zi = I) = ---::------:--=-----,-,-----=--number of possible samples

As a consequence of Equation (2.18),
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The variance of y is also calculated using properties of the random variables
Z!, ... , ZN. Note that

2 2 n ( n )2 n ( n )V(Zi) = E[Zi] - (E[ZiD = N - N = N I - N .
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For i =1= j,

E[Z;Zj] = P(Z; =1and Zj = 1)
= P(Zj = 1 I Z; = l)P(Z; = 1)

Because the population is finite, the Z;'s are not quite independent-if we know that
unit i is in the sample, we do have a small amount of information about whether
unit j is in the sample, reflected in the conditional probability P(Zj = 1 I Z; = 1).
Consequently, for i =1= j,

COV(Zi, Zj) = E[ZiZj] - E[ZilE[Zj]
n - 1 n (n )2

=N-1N-N

(1-
We use the covariance (Cov) of Zi and Zj to calculate the variance of y; see Ap-
pendix B for properties of covariances. The negative covariance of Zi and Zj is the
source of the fpc.

V(y) = :2 V (t ZiY;)

= :2 COV ( t ZiY;,t ZjYj)

l[N ]
= n2 8 y;V(Z;) +8 YiYj COV(Zi, Zj)

1 [n ( n) N 2 N N 1 n ) ( n )]="2 - 1- - L Yi - L L Y;Yj-_- (1 - - -
n N N i=1 i=1 Hi N 1 N N

= [t Y;- t t YiYj]
n N N i=1 N 1 ;=1 j""i

= (1 - 1 [(N - 1)t l -(t Yi)2 +t l]
n N N(N - 1) i=1 i=1 i=1

To show that the estimator in (2.9) is an unbiased estimator of the variance, we
need to show that E[s2] = S2. The argument proceeds much like the previous one.
Since S2 = (Yi - Yu?I(N - 1), it makes sense when trying to find an unbiased
estimator to find the expected value of LiES(Yi - y)2 and then find the multiplicative
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constant that will give the unbiasedness:

E [I:(Yi - y)2] = E [I: {(Yi - Yu) - <y - yu)}2]lES IES

= E [I: (Yi - YU)2 - n(y - Yu )2]
lES

= E [t Zi(Yi - yu)2] - nV(y)
1=1

= !!... t(Yi - yu)2 - (1- !!...)S2N i=1 N
= n(N - 1) S2 _ N - n S2

N N
= (n -1)S2.

Thus,

2.8
A Model for Simple Random Sampling*

Unless you have studied randomization theory in the design of experiments, 1proofs in the preceding section probably seemed strange to you. The random variabin randomization theory are not concerned with the responses Yi: They are simIrandom variables that tell us whether the ith unit is in the sample or not. In a desigbased, or randomization theory, approach to sampling inference, the only relationshbetween units sampled and units not sampled is that the nonsampled units couhave been sampled had we used a different starting value for the random numbgenerator.
In Section 2.7 we found, properties of the sample mean y using randomizatictheory: Yl, Y2, ... , YN were considered to be fixed values, and y is unbiased becau:the average of yS for all possible samples S equals Yu. The only probabilitiesin finding the expected value and variance of y are the probabilities that units aJincluded in the sample.
In your basic statistics class, you learned a different approach to inference. Thenyou had random variables {Yd that followed some probability distribution, and thactual sample values were realizations of those random variables. Thus you assumecfor example, that Y1, Y2 , •.• , Yn were independent and identically distributed frona normal distribution with mean J.1, and variance a 2 and used properties of independent random variables and the normal distribution to find expected values of varioustatistics.
We can extend this approach to sampling by thinking of random variables Yj ,Y2 , ••• , YN generated from some model. The actual values for the finite population,


