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A
lthough the logic of experimentation is for the most part intuitive, researchers 
can run into trouble if they lack a fi rm grasp of the key assumptions that must 
be met in order for experiments to provide reliable assessments of cause and 

eff ect. Th is point applies in particular to fi eld experimental researchers, who must 
frequently make  real- time decisions about research design. Failure to understand 
core statistical principles and their practical implications may cause researchers to 
squander resources and experimental opportunities. It is wise, therefore, to invest 
time studying the formal statistical properties of experiments before launching a 
research project.

Th is chapter introduces a system of notation that will be used throughout the 
book. By depicting the outcomes that potentially manifest themselves depending on 
whether the treatment is administered to each unit, the notation clarifi es a  number 
of key concepts, such as the idea of a treatment eff ect. Th is notational system is then 
used to shed light on the conditions under which experiments provide persuasive evi-
dence about cause and eff ect. Th e chapter culminates with a list of core assumptions 
and what they imply for experimental design. Th e advantage of working methodi-
cally from core principles is that a long list of  design- related admonitions fl ows from 
a relatively compact set of ideas that can be stored in working memory.

2.1 Potential Outcomes

Suppose we seek to gauge the causal eff ect of a treatment. For concreteness, suppose 
we wish to study the budgetary consequences of having women, rather than men, 
head Indian village councils, which govern rural areas in West Bengal and Rajasthan.1 

Causal Inference and Experimentation

CHAPTER 2

1 See Chattopadhyay and Duflo 2004.
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22  CAUSAL INFERENCE AND EXPERIMENTATION

Students of legislative politics have argued that women bring diff erent policy priori-
ties to the budgetary process in developing countries, emphasizing health issues such 
as providing clean drinking water. Leave aside for the time being the question of how 
this topic might be studied using randomly assigned treatments. For the moment, 
simply assume that each village either receives the treatment (a woman serves as vil-
lage council head) or remains untreated (with its village council headed by a man). 
For each village, we also observe the share of the local council budget that is allocated 
to providing clean drinking water. To summarize, we observe the treatment (whether 
the village head is a woman or not) and the outcome (what share of the budget goes 
to a policy issue of special importance to women).

What we do not observe is how the budget in each village headed by a man would 
have been allocated if it had been headed by a woman, and vice versa. Although we do 
not observe these counterfactual outcomes, we can nevertheless imagine them. Tak-
ing this mental exercise one step further, we might imagine that each village has two 
potential outcomes: the budget it would enact if headed by a woman and the budget 
it would enact if headed by a man. Th e gender of the village head determines which 
potential budget we observe. Th e other budget remains imaginary or counterfactual.

Table 2.1 provides a stylized example of seven villages in order to introduce the 
notation that we will use throughout the book. Th e villages constitute the subjects in 
this experiment. Each subject is identifi ed by a subscript i, which ranges from 1 to 7. 
Th e third village on the list, for example, would be designated as i = 3. Th e table 
imagines what would happen under two diff erent scenarios. Let Yi(1) be the out-
come if village i is exposed to the treatment (a woman as village head), and let Yi(0) 
be the outcome if this village is not exposed to the treatment. For example, Village 
3 allocates 30% of its budget to water sanitation if headed by a woman but only 20% 
if headed by a man, so, Y3(1) = 30%, and Y3(0) = 20%. Th ese are called potential 
outcomes because they describe what would happen if a treatment were or were not 
administered.

For purposes of this example, we assume that each village has just two potential 
outcomes, depending on whether it receives the treatment; villages are assumed to be 
unaff ected by the treatments that other villages receive. In section 2.7, we spell out 

What you will learn from this chapter:

1. The system of notation used to describe potential outcomes.

2. Defi nitions of core terms: average treatment effect, expectation, random 

assignment, and unbiasedness.

3. Assumptions that must be met in order for experiments to produce unbi-

ased estimates of the average treatment effect.
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CAUSAL INFERENCE AND EXPERIMENTATION  23

TABLE 2.1

Illustration of potential outcomes for local budgets when village 
council heads are women or men. (Entries are shares of local 
budgets allocated to water sanitation.)

Village i

Y
i
(0) 

Budget share if 
village head is 

male

Y
i
(1) 

Budget share if 
village head is 

female
t

i
 

Treatment effect

Village 1 10 15 5

Village 2 15 15 0

Village 3 20 30 10

Village 4 20 15 -5

Village 5 10 20 10

Village 6 15 15 0

Village 7 15 30 15

Average 15 20 5

more precisely the assumptions that underlie the model of potential outcomes and 
discuss complications that arise when subjects are aff ected by the treatments that 
other subjects receive.

2.2 Average Treatment Effects

For each village, the causal eff ect of the treatment (ti) is defi ned as the diff erence 
between two potential outcomes:

 ti K Yi(1) - Yi(0). (2.1)

In other words, the treatment eff ect for each village is the diff erence between two 
potential states of the world, one in which the village receives the treatment and 
another in which it does not. For Village 3, this causal eff ect is 30 - 20 = 10.

Th e empirical challenge that researchers typically face when observing outcomes 
is that at any given time one can observe Yi(1) or Yi(0) but not both. (Bear in mind 
that the only reason we are able to see both potential outcomes for each village in 
Table 2.1 is that this is a hypothetical example!) Building on the notational system 
introduced above, we defi ne Yi as the observed outcome in each village and di as the 
observed treatment that is delivered in each village. In this case, Yi is the observed 
share of the budget allocated to water sanitation, and di equals 1 when a woman is 
village head and 0 otherwise.
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24  CAUSAL INFERENCE AND EXPERIMENTATION

BOX 2.1

Potential Outcomes Notation

In this system of notation, the subscript i refers to subjects 1 through N.
Th e variable di indicates whether the ith subject is treated: di = 1 means 

the ith subject receives the treatment, and di = 0 means the ith subject does 
not receive the treatment. It is assumed that di is observed for every subject.

Yi(1) is the potential outcome if the ith subject were treated. Yi(0) is the 
potential outcome if the ith subject were not treated. In general, potential out-
comes may be written Yi(d), where d indexes the treatment. Th ese potential 
outcomes are fi xed attributes of each subject and represent the outcome that 
would be observed hypothetically if that subject were treated or untreated.

A schedule of potential outcomes refers to a comprehensive list of poten-
tial outcomes for all subjects. Th e rows of this schedule are indexed by i, and 
the columns are indexed by d. For example, in Table 2.1 the Yi(0) and Yi(1) 
potential outcomes for the fi ft h subject may be found in adjacent columns of 
the fi ft h row.

Th e connection between the observed outcome Yi and the underlying 
potential outcomes is given by the equation Yi = diYi(1) + (1 - di)Yi(0). Th is 
equation indicates that the Yi(1) are observed for subjects who are treated, and 
the Yi(0) are observed for subjects who are not treated. For any given subject, 
we observe either Yi(1) or Yi(0), never both.

It is sometimes useful to refer to potential outcomes for a subset of all sub-
jects. Expressions of the form Yi( #) � X = x denote potential outcomes when 
the condition X = x holds. For example, Yi(0) � di = 1 refers to the untreated 
potential outcome for a subject who actually receives the treatment.

Because we oft en want to know about the statistical properties of a hypo-
thetical random assignment, we distinguish between di , the treatment that a 
given subject receives (a variable that one observes in an actual dataset), and 
Di , the treatment that could be administered hypothetically. Di is a random 
variable, and the ith subject might be treated in one hypothetical study and 
not in another. For example, Yi(1) � Di = 1 refers to the treated potential out-
come for a subject who would be treated under some hypothetical allocation 
of treatments.
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BOX 2.2

Defi nition: Average Treatment Effect

Th e average treatment eff ect (ATE) is the sum of the  subject- level treatment 
eff ects, Yi(1) - Yi(0), divided by the total number of subjects. An equivalent 
way to express the ATE is to say that it equals mY(1) - mY(0) , where mY(1) is the 
average value of Yi(1) for all subjects and mY(0) is the average value of Yi(0) for 
all subjects.

Th e budget that we observe in each village may be summarized using the follow-
ing expression:

 Yi = diYi(1) + (1 - di)Yi(0). (2.2)

Because di is either 0 or 1, one of the terms on the right side of the equals sign will 
always be zero. We observe the potential outcome that results from treatment, Yi(1), if 
the treatment is administered (di = 1). If the treatment is not administered (di = 0), 
we observe the potential outcome that results when no treatment occurs, Yi(0).

Th e average treatment eff ect, or ATE, is defi ned as the sum of the ti divided by N, 
the number of subjects:

 ATE K
1
N a

N
i=1ti . (2.3)

An equivalent way to obtain the average treatment eff ect is to subtract the average 
value of Yi(0) from the average value of Yi(1):

1
N a

N
i=1 Yi(1) -

1
N a

N
i=1 Yi(0) =

1
N a

N
i=1(Yi(1) - Yi(0)) =

1
N a

N
i=1 ti . (2.4)

Th e average treatment eff ect is an extremely important concept. Villages may have 
diff erent ti , but the ATE indicates how outcomes would change on average if every 
village were to go from untreated (male village council head) to treated (female vil-
lage council head).

From the rightmost column of Table 2.1, we can calculate the ATE for the seven 
villages. Th e average treatment eff ect in this example is 5 percentage points: if all 
villages were headed by men, they would on average spend 15% of their budgets on 
water sanitation, whereas if all villages were headed by women, this fi gure would rise 
to 20%.
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26  CAUSAL INFERENCE AND EXPERIMENTATION

2.3 Random Sampling and Expectations

Suppose that instead of calculating the average potential outcome for all villages, 
we drew a random sample of villages and calculated the average among the villages we 
sampled. By random sample, we mean a selection procedure in which v villages are 
selected from the list of N villages, and every possible set of v villages is equally likely 
to be selected. For example, if we select one village at random from a list of seven vil-
lages, seven possible samples are equally likely. If we select three villages at random 
from a list of seven villages,

 
N!

v!(N-v)!
=

7!
3!4!

=
7*6*5*4*3*2*1

(3*2*1)(4*3*2*1)
= 35 (2.5)

possible samples are equally likely. If potential outcomes vary from one village to the 
next, the average potential outcome in the villages we sample will vary, depending on 
which of the possible samples we happen to select. Th e sample average may be char-
acterized as a random variable, a quantity that varies from sample to sample.

Th e term expected value refers to the average outcome of a random variable. (See 
Box 2.3.) In our example, the random variable is the number we obtain when we 
sample villages at random and calculate their average outcome. Recall from introduc-
tory statistics that under random sampling, the expected value of a sample average 
is equal to the average of the population from which the sample is drawn.2 Th is prin-
ciple may be illustrated using the population of villages depicted in Table 2.1. Recall 
that the average value of Yi(0) among all villages in Table 2.1 is 15. Suppose we sample 
two villages at random from the list of seven villages and calculate the average value 
of Yi(0) for the two selected villages. Th ere are

 
N!

v!(N-v)!
=

7!
2!5!

= 21 (2.6)

possible ways of sampling two villages at random from a list of seven, and each sam-
ple is equally likely to be drawn. Any given sample of two villages might contain 
an average value of Yi(0) that is higher or lower than the true average of 15, but the 
expected value refers to what we would obtain on average if we were to examine all 
21 possible samples, for each one calculating the average value of Yi(0):

{10, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 15, 15, 15, 15, 15, 15, 15, 
17.5, 17.5, 17.5, 17.5, 17.5, 17.5, 20}. (2.7)

2 The easiest way to see the intuition behind this principle is to consider the case in which we randomly 
sample just one village. Each village is equally likely to be sampled. The average over all seven possible 
samples is identical to the average for the entire population of seven villages. This logic generalizes to 
samples where v 7 1 because each village appears in exactly v>7 of all possible samples.
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BOX 2.3

Th e expectation of a discrete random variable X is defi ned as

E[X] = gxPr[X = x],

where Pr[X = x] denotes the probability that X takes on the value x, and 
where the summation is taken over all possible values of x.

For example, what is the expected value of a randomly selected value of ti 
from Table 2.1?

 E[ti] = gtPr[ti = t]

 = (-5)a 1
7
b + (0)a 2

7
b + (5)a 1

7
b + (10)a 2

7
b + (15)a 1

7
b = 5.

Properties of Expectations

Th e expectation of the constant a is itself: E[a] = a.

For a random variable X and constants a and b, E[a + bX] = a + bE[X].

Th e expectation of a sum of two random variables, X and Y , is the sum of 
their expectations: E[X + Y] = E[X] + E[Y].

Th e expectation of the product of two random variables, X and Y , 
is the product of their expectations plus the covariance between them: 
E[XY] = E[X]E[Y] + E[(X - E[X])(Y - E[Y])].

Th e average of these 21 numbers is 15. In other words, the expected value of the aver-
age Yi(0) obtained from a random sample of two villages is 15.

Th e concept of expectations plays an important role in the discussion that fol-
lows. Because we will refer to expectations so oft en, a bit more notation is helpful. 
Th e notation E[X] refers to the expectation of a random variable X. (See Box 2.3.) 
Th e expression “the expected value of Yi(0) when one subject is sampled at random” 
will be written compactly as E[Yi(0)]. When a term like Yi(0) appears in conjunction 
with an expectations operator, it should be read not as the value of Yi(0) for subject 
i but instead as a random variable that is equal to the value of Yi(0) for a randomly 
selected subject. When the expression E[Yi(0)] is applied to values in Table 2.1, the 
random variable is the random selection of a Yi(0) from the list of all Yi(0); since 
there are seven possible random selections, the average of which is 15, it follows that 
E[Yi(0)] = 15.
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28  CAUSAL INFERENCE AND EXPERIMENTATION

Sometimes attention is focused on the expected value of a random variable 
within a subgroup. Conditional expectations refer to subgroup averages. In terms 
of notation, the logical conditions following the | symbol indicate the criteria that 
defi ne the subgroup. For example, the expression “the expectation of Yi(1) when 
one village is selected at random from those villages that were treated” is written 
E[Yi(1) � di = 1]. Th e idea of a conditional expectation is straightforward when 
working with quantities that are in principle observable. More  mind- bending are 
expressions like E[Yi(1) � di = 0], which denotes “the expectation of Yi(1) when one 
village is selected at random from those villages that were not treated.” In the course 
of conducting research, we will never actually see Yi(1) for an untreated village, nor 
will we see Yi(0) for a treated village. Th ese potential outcomes can be imagined but 
not observed.

One special type of conditional expectation arises when the subgroup is defi ned 
by the outcome of a random process. In that case, the conditional expectation may 
vary depending on which subjects happened to meet the condition in any particular 
realization of the random process. For example, suppose that a random process, 
such as a coin fl ip, determines which subjects are treated. For a given treatment 
assignment di , we could calculate E[Yi(1) � di = 0], but this expectation might have 
been diff erent had the coin fl ips come out diff erently. Suppose we want to know 
the  expected conditional expectation, or how the conditional expectation would 
come out, on average, across all possible ways that di could have been allocated. Let 
Di be a random variable that indicates whether each subject would be treated in a 
hypothetical experiment. Th e conditional expectation E[Yi(1) � Di = 0] is calculated 
by considering all possible realizations of Di (all the possible ways that N  coins could 
have been fl ipped) in order to form the joint probability distribution function for 
Yi(1) and Di . As long as we know the joint probability of observing each paired set 
of values {Y(1), D}, we can calculate the conditional expectation using the formula 
in Box 2.4.3

With this basic system of notation in place, we may now describe the connection 
between expected potential outcomes and the average treatment eff ect (ATE):

 E[Yi(1) - Yi(0)] = E[Yi(1)] - E[Yi(0)]

 =
1
N a

N
i=1Yi(1) -

1
N a

N
i=1Yi(0)

 =
1
N a

N

i= 1
[Yi(1) - Yi(0)] K ATE . (2.8)

3 The notation E[Yi(1) � Di = 0] may be regarded as shorthand for E[E[Yi(1) � di = 0, d]], where d refers 
to a vector of treatment assignments and di refers its ith element. Given d, we may calculate the probability 
distribution function for all {Y(1), d} pairs and the expectation given this set of assignments. Then we may 
take the expectation of this expected value by summing over all possible d vectors.
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BOX 2.4

Defi nition: Conditional Expectation

For discrete random variables Y  and X, the conditional expectation of Y  given 
that X takes on the value x is

E[Y � X = x] = gy Pr[Y = y � X = x] = gy 
Pr[Y = y, X = x]

Pr[X = x]
,

where Pr[Y = y, X = x] denotes the joint probability of Y = y and X = x, 
and where the summation is taken over all possible values of y.

For example, in Table 2.1 what is the conditional expectation of a randomly 
selected value of ti, for villages where Yi(0) 7 10? Th is question requires us 
to describe the joint probability distribution function for the variables ti and 
Yi(0) so that we can calculate Pr[ti = t, Yi(0) 7 10]. Table 2.1 indicates that 
the {t, Y(0)} pair {0, 15} occurs with probability 2>7, while the other pairs 
{5, 10}, {10, 20}, {-5, 20}, {10, 10}, and {15, 15} each occur with probability 1>7. 
Th e marginal distribution of Yi(0) reveals that 5 of the 7 Yi(0) are greater than 10, 
so Pr[Yi(0) 7 10] = 5>7.

 E[ti � Yi(0) 7 10] = a t 
Pr[ti = t, Yi(0)710]

Pr[Yi(0)710]

 = (-5)
1
7
5
7

+ (0)
2
7
5
7

+ (5)
0
5
7

+ (10)
1
7
5
7

+ (15)
1
7
5
7
= 4.

In order to illustrate the idea of a conditional expectation when condition-
ing on the outcome of a random process, suppose we randomly assign one 
of the observations in Table 2.1 to treatment (Di = 1) and the remaining six 
observations to control (Di = 0). If each of the seven possible assignments 
occurs with probability 1>7, what is the expected value of a randomly selected 
ti given that Di = 1? Again, we start with the joint probability density func-
tion for ti and Di and consider all possible pairings of these two variables’ val-
ues. Th e {t, D} pairings {-5, 1}, {5, 1}, and {15, 1} occur with probability 1>49, 
while the pairings {0, 1} and {10, 1} occur with probability 2>49; the remaining 
{t, D} pairings are instances in which t is paired with 0. Th e marginal distribu-
tion Pr[Di = 1] = 3(1>49) + 2(2>49) = 1>7.

 E[ti � Di = 1] = a t 
Pr[ti = t, Di = 1]

Pr[Di = 1]

 = (-5)
1

49
1
7

+ (0)
2

49
1
7

+ (5)
1

49
1
7

+ (10)
2

49
1
7

+ (15)
1

49
1
7
= 5.
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30  CAUSAL INFERENCE AND EXPERIMENTATION

4 The notation used here is just one way to explicate the link between expectations and the ATE. Aronow 
and Samii (2012) suggest an alternative formalization. Their model envisions a finite population U consist-
ing of units j in 1, 2, . . .  , N, each of which has an associated triple (yj(1), yj(0), Dj�) such that yj(1) and yj(0) 
are fixed potential outcomes and Dj� is a random variable indicating the treatment status of unit j. Reassign 
a random index ordering i in 1, 2, . . .  , N. Then, for an arbitrary unit i, there exists an associated triple of 
random variables (Yi(1), Yi(0), Di) such that the random variable Yi = DiYi(1) + (1 - Di)Yi(0). It follows 
that for equation (2.8):

E[Yi(1)] - E[Yi(0)] =
1
N a

N
j=1 yj(1) -

1
N a

N
j=1 yj(0) = ATE.

Statistical operators such as expectations or independence refer to random variables associated with an 
arbitrary index i. Looking ahead to later chapters, one might expand this system to include other unit-level 
attributes, such as covariates or missingness, by attaching them to the triple indexed by j before reassigning 
the ordering.

Th e fi rst line of equation (2.8) expresses the fact that when a village is selected at 
random from the list of villages, its expected treatment eff ect is equal to the diff er-
ence between the expected value of a randomly selected treated potential outcome 
and the expected value of a randomly selected untreated potential outcome. Th e 
second equality in equation (2.8) indicates that the expected value of a randomly 
selected Yi(1) equals the average of all Yi(1) values, and that the expected value of 
a randomly selected Yi(0) equals the average of all Yi(0) values. Th e third equality 
refl ects the fact that the diff erence between the two averages in the second line of 
equation (2.8) can be expressed as the average diff erence in potential outcomes. Th e 
fi nal equality notes that the average diff erence in potential outcomes is the defi ni-
tion of the average treatment eff ect. In sum, the diff erence in expectations equals 
the diff erence in average potential outcomes for the entire list of  villages, or the ATE.4

Th is relationship is apparent from the schedule of potential outcomes in Table 2.1. 
Th e column of numbers representing the treatment eff ect (ti) is, on aver age, 5. If we 
were to select villages at random from this list, we would expect their average treat-
ment eff ect to be 5. We get the same result if we subtract the expected value of a ran-
domly selected Yi(0) from the expected value of a randomly selected Yi(1).

2.4 Random Assignment and Unbiased Inference

Th e challenge of estimating the average treatment eff ect is that at a given point in time 
each village is either treated or not: either Yi(1) or Yi(0) is observed, but not both. To 
illustrate the problem, Table 2.2 shows what outcomes would be observed if Village 1 
and Village 7 were treated, while the remaining villages were not. We observe Yi(1) 
for Villages 1 and 7 but not Yi(0). For Villages 2, 3, 4, 5, and 6, we observe Yi(0) but not 
Yi(1). Th e unobserved or “missing” values in Table 2.2 are indicated with a “?”.
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Random assignment addresses the “missing data” problem by creating two 
groups of observations that are, in expectation, identical prior to application of the 
treatment. When treatments are allocated randomly, the treatment group is a random 
sample of all villages, and therefore the expected potential outcomes among villages 
in the treatment group are identical to the average potential outcomes among all villages. 
Th e same is true for villages in the control group. Th e control group’s expected poten-
tial outcomes are also identical to the average potential outcomes among all villages. 
Th erefore, in expectation, the treatment group’s potential outcomes are the same as 
the control group’s. Although any given random allocation of villages to treatment 
and control groups may produce groups of villages that have diff erent average poten-
tial outcomes, this procedure is fair in the sense that it does not tend to give one 
group a higher set of potential outcomes than the other.

As Chattopadhyay and Dufl o point out,  random assignment is in fact used in 
rural India to assign women to head  one- third of the local village councils.5 Ordi-
narily, men would head the village councils, but Indian law mandates that se lected 

5 Chattopadhyay and Duflo 2004. A lottery is used to assign council positions to women in Rajasthan. 
In West Bengal, a near-random assignment procedure is used whereby villagers are assigned according to 
their serial numbers.

TABLE 2.2

Illustration of observed outcomes for local budgets when two village 
councils are headed by women.

Village i

Y
i
(0) 

Budget share if 
village head is 

male

Y
i
(1) 

Budget share if 
village head is 

female
t

i
 

Treatment effect

Village 1 ? 15 ?

Village 2 15 ? ?

Village 3 20 ? ?

Village 4 20 ? ?

Village 5 10 ? ?

Village 6 15 ? ?

Village 7 ? 30 ?

Estimated average 
based on observed data

16 22.5 6.5

Note: Th e observed outcomes in this table are based on the potential outcomes listed in Table 2.1.
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32  CAUSAL INFERENCE AND EXPERIMENTATION

BOX 2.5

Two Commonly Used Forms of Random Assignment

Random assignment refers to a procedure that allocates treatments with 
known probabilities that are greater than zero and less than one.

Th e most basic forms of random assignment allocate treatments such that 
every subject has the same probability of being treated. Let N be the number of 
subjects, and let m be the number of subjects who are assigned to the treatment 
group. Assume that N and m are integers such that 0 6 m 6 N. Simple ran-
dom assignment refers to a procedure whereby each subject is allocated to the 
treatment group with probability m>N. Complete random assignment refers 
to a procedure that allocates exactly m units to treatment. 

Under simple or complete random assignment, the probability of being 
assigned to the treatment group is identical for all subjects; therefore treatment 
status is statistically independent of the subjects’ potential outcomes and their 
background attributes (X):

Yi(0), Yi(1), X  Di  ,

where the symbol  means “is independent of.” For example, if a die roll is 
used to assign subjects to treatment with probability 1>6, knowing whether 
a subject is treated provides no information about the subject’s potential out-
comes or background attributes. Th erefore, the expected value of Yi(0), Yi(1), 
and Xi is the same in treatment and control groups. 

villages install a female representative as head of the council. For purposes of illustra-
tion, suppose that our collection of seven villages were subject to this law, and that 
two villages will be randomly assigned female council heads. Consider the statistical 
implications of this arrangement. Th is random assignment procedure implies that 
every village has the same probability of receiving the treatment; assignment bears no 
systematic relationship to villages’ observed or unobserved attributes.

Let’s take a closer look at the formal implications of this form of random assign-
ment. When villages are assigned such that every village has the same probability 
of receiving the treatment, the villages that are randomly chosen for treatment are 
a random subset of the entire set of villages. Th erefore, the expected Yi(1) potential 
outcome among treated villages is the same as the expected Yi(1) potential outcome 
for the entire set of villages:

 E[Yi(1) � Di = 1] = E[Yi(1)]. (2.9)
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When we randomly select villages into the treatment group, the villages we leave 
behind for the control group are also a random sample of all villages. Th e expected 
Yi(1) in the control group (Di = 0) is therefore equal to the expected Yi(1) for the 
entire set of villages:

 E[Yi(1) � Di = 0] = E[Yi(1)]. (2.10)

Putting equations (2.9) and (2.10) together, we see that under random assignment the 
treatment and control groups have the same expected potential outcome:

 E[Yi(1) � Di = 1] = E[Yi(1) � Di = 0]. (2.11)

Equation (2.11) also underscores the distinction between realized and unrealized 
potential outcomes. On the left  side of the equation is the expected treated potential 
outcome among villages that receive the treatment. Th e treatment causes this poten-
tial outcome to become observable. On the right side of the equation is the expected 
treated potential outcome among villages that do not receive the treatment. Here, the 
lack of treatment means that the treated potential outcome remains unobserved for 
these subjects.

Th e same logic applies to the control group. Villages that do not receive the treat-
ment (Di = 0) have the same expected untreated potential outcome Yi(0) that the 
treatment group (Di = 1) would have if it were untreated:

 E[Yi(0) � Di = 0] = E[Yi(0) � Di = 1] = E[Yi(0)]. (2.12)

Equations (2.11) and (2.12) follow from random assignment: Di conveys no informa-
tion whatsoever about the potential values of Yi(1) or Yi(0). Th e randomly assigned 
values of Di determine which value of Yi we actually observe, but they are nevertheless 
statistically independent of the potential outcomes Yi(1) and Yi(0). (See Box 2.5 for 
discussion of the term independence.)

When treatments are assigned randomly, we may rearrange equations (2.8), 
(2.11), and (2.12) in order to express the average treatment eff ect as

 ATE = E[Yi(1) � Di = 1] - E[Yi(0) � Di = 0]. (2.13)

Th is equation suggests an empirical strategy for estimating the average treatment 
eff ect. Th e terms E[Yi(1) � (Di = 1)] and E[Yi(0) � (Di = 0)] may be estimated using 
experimental data. We do not observe the Yi(1) potential outcomes for all observa-
tions, but we do observe them for the random sample of observations that receive 
the treatment. Similarly, we do not observe the Yi(0) potential outcomes for all 
observations, but we do observe them for the random sample of observations in the 
control group. If we want to estimate the average treatment eff ect, equation (2.13) 
suggests that we should take the diff erence between two sample means: the average 

114400_02_021-050_r2_rs.indd   33114400_02_021-050_r2_rs.indd   33 16/03/12   7:10 PM16/03/12   7:10 PM



34  CAUSAL INFERENCE AND EXPERIMENTATION

outcome in the treatment group minus the average outcome in the control group. 
Ideas that enable researchers to use observable quantities (e.g., sample averages) to 
reveal parameters of interest (e.g., average treatment eff ects) are termed identifi cation 
strategies.

Statistical procedures used to make guesses about parameters such as the aver-
age treatment eff ect are called estimators. In this example, the estimator is very sim-
ple, just a diff erence between two sample averages. Before applying an estimator to 
actual data, a researcher should refl ect on its statistical properties. One especially 
important property is unbiasedness. An estimator is unbiased if it generates the right 
answer, on average. In other words, if the experiment were replicated an infi nite 
number of times under identical conditions, the average estimate would equal the 
true parameter. Some guesses may be too high and others too low, but the average 
guess will be correct. In practice, we will not be able to perform an infi nite number 
of experiments. In fact, we might just perform one experiment and leave it at that. 
Nevertheless, in theory we can analyze the properties of our estimation procedure 
to see whether, on average, it recovers the right answer. (In the next chapter, we 
consider another property of estimators: how precisely they estimate the parameter 
of interest.)

In sum, when treatments are administered using a procedure that gives every 
subject the same probability of being treated, potential outcomes are independent of 
the treatments that subjects receive. Th is property suggests an identifi cation strategy 
for estimating average treatment eff ects using experimental data.

Th e remaining task is to demonstrate that the proposed estimator—the diff er-
ence between the average outcome in the treatment group and the average outcome 
in the control group—is an unbiased estimator of the ATE when all subjects have 
the same probability of being treated. Th e proof is straightforward. Because the 
units assigned to the control group are a random sample of all units, the average of 
the control group outcomes is an unbiased estimator of the average value of Yi(0) 

BOX 2.6

Defi nition: Estimator and Estimate

An estimator is a procedure or formula for generating guesses about param-
eters such as the average treatment eff ect. Th e guess that an estimator generates 
based on a particular experiment is called an estimate. Estimates are denoted 
using a “hat” notation. Th e estimate of the parameter u is written un.
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among all units. Th e same goes for the treatment group: the average outcome among 
units that receive the treatment is an unbiased estimator of the average value of Yi(1) 
among all units. Formally, if we randomly shuffl  e the villages and place the fi rst m 
subjects in the treatment group and the remaining N - m subjects in the control 
group, we can analyze the expected, or average, outcome over all possible random 
assignments:

E £am
1 Yi

m -

a
N
m + 1Yi

N - m
§ = E £am

1 Yi

m § - E £aN
m + 1Yi

N - m
§

=
E[Y1] + E[Y2] + g + E[Ym]

m -

E[Ym + 1] + E[Ym + 2] + g+ E[YN]
N - m

 = E[Yi(1) � Di = 1] - E[Yi(0) � Di = 0]

 = E[Yi(1)] - E[Yi(0)] = E[ti] = ATE. (2.14)

Equation (2.14) conveys a simple but extremely useful idea. When units are randomly 
assigned, a comparison of average outcomes in treatment and control groups (the 
 so- called  diff erence- in- means estimator) is an unbiased estimator of the average treat-
ment eff ect.

• µ
Average outcome 

among treated 
units

Average outcome 
among untreated 

units

BOX 2.7

Defi nition: Unbiased Estimator

An estimator is unbiased if the expected value of the estimates it produces is 
equal to the true parameter of interest. Call u the parameter we seek to esti-
mate, such as the ATE. Let un represent an estimator, or procedure for generat-
ing estimates. For example, un may represent the diff erence in average outcomes 
between treatment and control groups.  Th e expected value of this estimator 
is the average estimate we would obtain if we apply this estimator to all pos-
sible realizations of a given experiment or observational study.  We say that un 
is unbiased if E(un) = u; in words, the estimator un is unbiased if the expected 
value of this estimator is u, the parameter of interest. Although unbiasedness is 
a property of estimators and not estimates, we refer to the estimates generated 
by an unbiased estimator as “unbiased estimates.”
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2.5 The Mechanics of Random Assignment

Th e result in equation (2.14) hinges on random assignment, and so it is important 
to be clear about what constitutes random assignment. Simple random assignment is 
a term of art, referring to a procedure—a die roll or coin toss—that gives each sub-
ject an identical probability of being assigned to the treatment group. Th e practical 
drawback of simple random assignment is that when N is small, random chance can 
create a treatment group that is larger or smaller than what the researcher intended. 
For example, you could fl ip a coin to assign each of 10 subjects to the treatment con-
dition, but there is only a 24.6% chance of ending up with exactly 5 subjects in treat-
ment and 5 in control. A useful special case of simple random assignment is complete 
random assignment, where exactly m of N units are assigned to the treatment group 
with equal probability.6

Th e procedure used to conduct complete random assignment can take any of 
three equivalent forms. Suppose one has N subjects and seeks to assign treatments to 
m of them. Th e fi rst method is to select one subject at random, then select another 
at random from the remaining units, and so forth until you have selected m subjects 
into the treatment group. A second method is to enumerate all of the possible ways 
that m subjects may be selected from a list of N subjects, and randomly select one of 
the possible allocation schemes. A third method is to randomly permute the order of 
all N subjects and label the fi rst m subjects as the treatment group.7

Beware of the fact that random is a word that is used loosely in common par-
lance to refer to procedures that are arbitrary, haphazard, or unplanned. Th e problem 
is that arbitrary, haphazard, or unplanned treatments may follow systematic patterns 
that go unnoticed. Procedures such as alternation are risky because there may be 
systematic reasons why certain types of subjects might alternate in a sequence, and 
indeed, some early medical experiments ran into exactly this problem.8 We use the 
term random in a more exacting sense. Th e physical or electronic procedure by which 
randomization is conducted ensures that assignment to the treatment group is statis-
tically independent of all observed or unobserved variables.

6 In Chapters 3 and 4, we discuss other frequently used methods of random assignment: clustered ran-
dom assignment, where groups of subjects are randomly assigned to treatment and control, and block 
random assignment (also called stratified random assignment), where individuals are first divided into 
blocks, and then random assignment is performed within each block. Box 2.5 notes that a defining feature 
of complete (as opposed to clustered or blocked) random assignment is that all possible assignments of 
N  subjects to a treatment group of size m are equally likely.
7 Cox and Reid 2000, p. 20. The term complete randomization is a bit awkward, as the word complete 
does not convey the requirement that exactly m units are allocated to treatment, but this terminology has 
become standard (see Rosenbaum 2002, pp.  25– 26).
8 Hróbjartsson, Gøtzsche, and Gluud 1998.
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In practical terms, random assignment is best done using statistical soft ware. 
Here is an easy procedure for implementing complete random assignment. First, 
determine N, the number of subjects in your experiment, and m, the number of sub-
jects who will be allocated to the treatment group. Second, set a random number 
“seed” using a statistics package, so that your random numbers may be reproduced 
by anyone who cares to replicate your work. Th ird, generate a random number for 
each subject. Fourth, sort the subjects by their random numbers in ascending order. 
Finally, classify the fi rst m observations as the treatment group. Example programs 
using R may be found at http://isps.research.yale.edu/FEDAI.

Generating random numbers is just the fi rst step in implementing random 
assignment. Aft er the numbers are generated, one must take pains to preserve the 
integrity of the assignment process. A defi ciency of alternation and many other arbi-
trary procedures is that they allow those administering the allocation to foresee who 
will be assigned to which experimental group. If a receptionist seeks to get the sickest 
patients into the experimental treatment group and knows that the pattern of assign-
ments alternates, he can reorder the patients in such a way as to shuttle the sickest 
subjects into the treatment group.9 Th e same concern arises even when a random 
sequence of numbers is used to assign incoming patients: random allocation may be 
undone if the receptionist knows the order of assignments ahead of time, because 
that enables him to position patients so that they will be assigned to a certain experi-
mental group. In order to guard against potential threats to the integrity of random 
assignment, researchers should build extra procedural safeguards into their experi-
mental designs, such as blinding those administering the experiment to the subjects’ 
assigned experimental groups.

2.6 The Threat of Selection Bias When 
Random Assignment Is Not Used

Without random assignment, the identifi cation strategy derived from equation (2.14) 
unravels. Th e treatment and control groups are no longer random subsets of all units 
in the sample. Instead, we confront what is known as a selection problem: receiving 
treatment may be systematically related to potential outcomes. For example, absent 
random assignment, villages determine whether their councils are headed by women. 
Th e villages that end up with female council heads may not be a random subset of 
all villages.

9 For examples of experiments in which random assignment was subverted, see Torgerson and Torger-
son 2008.
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To see how nonrandom selection jeopardizes the identifi cation strategy of com-
paring average outcomes in the treatment and control groups, rewrite the expected dif-
ference in outcomes from equation (2.13) by subtracting and adding E[Yi(0) � Di = 1]:

E[Yi(1) � Di = 1] - E[Yi(0) � Di = 0]   

=   E[Yi(1) - Yi(0) � Di = 1] + E[Yi(0) � Di = 1] - E[Yi(0) � Di = 0]. (2.15)

Under random assignment, the selection bias term is zero, and the ATE among the 
(randomly) treated villages is the same as the ATE among all villages. In the absence 
of random assignment, equation (2.15) warns that the apparent treatment eff ect is a 
mixture of selection bias and the ATE for a subset of villages.

In order to appreciate the implications of equation (2.15), consider the follow-
ing scenario. Suppose that instead of randomly selecting villages to receive the treat-
ment, our procedure were to let villages decide whether to take the treatment. Refer 
back to Table 2.1 and imagine that, if left  to their own devices, Village 5 and Village 7 
always elect a woman due to villagers’  pent- up demand for water sanitation, while 
the remaining villages always elect a man.10  Self- selection in this case leads to an 
exaggerated estimate of the ATE because receiving the treatment is associated with 
 lower- than- average values of Yi(0) and  higher- than- average values of Yi(1). Th e aver-
age outcome in the treatment group is 25, and the average outcome in the control 
group is 16. Th e estimated ATE is therefore 9, whereas the actual ATE is 5. Referring 
to equation (2.15) we see that in this case the ATE among the treated is not equal 
to the ATE for the entire subject pool, nor is the selection bias term equal to zero. 
Th e broader point is that it is risky to compare villages that choose to receive the 
treatment with villages that choose not to. In this example,  self- selection is related 
to potential outcomes; as a result, the comparison of treated and untreated villages 
recovers neither the ATE for the sample as a whole nor the ATE among those villages 
that receive treatment.

Th e beauty of experimentation is that the randomization procedure generates a 
schedule of treatment and control assignments that are statistically independent of 

8

Expected diff erence between treated and 
untreated outcomesy

ATE among the treated
8

Selection bias

10 When taking expectations over hypothetical replications of an experiment, we consider all possible 
random assignments. In our example of non-random allocation, however, nature makes the assignment. 
When taking expectations, we must therefore consider the average of all possible natural assignments. 
Rather than make up an assortment of possible assignments and stipulate the probability that each sce-
nario occurs, we have kept the example as simple as possible and assumed that the villages “always” elect 
the same type of candidate. In effect, we are taking expectations over just one possible assignment that 
occurs with probability 1.

114400_02_021-050_r2_rs.indd   38114400_02_021-050_r2_rs.indd   38 16/03/12   7:10 PM16/03/12   7:10 PM



CAUSAL INFERENCE AND EXPERIMENTATION  39

potential outcomes. In other words, the assumptions underlying equations (2.9) to 
(2.13) are justifi ed by reference to the procedure of random assignment, not substan-
tive arguments about the comparability of potential outcomes in the treatment and 
control groups.

Th e preceding discussion should not be taken to imply that experimentation 
invokes no substantive assumptions. Th e unbiasedness of the  diff erence- in- means 
estimator hinges not only on random assignment but also on two assumptions about 
potential outcomes, the plausibility of which will vary depending on the application. 
Th e next section spells out these important assumptions.

2.7 Two Core Assumptions about 
Potential Outcomes

To this point, our characterization of potential outcomes has glossed over two impor-
tant details. In order to ease readers into the framework of potential outcomes, we 
simply stipulated that each subject has two potential outcomes, Yi(1) if treated and 
Yi(0) if not treated. To be more precise, each potential outcome depends solely on 
whether the subject itself receives the treatment. When writing potential outcomes in 
this way, we are assuming that potential outcomes respond only to the treatment and 
not some other feature of the experiment, such as the way the experimenter assigns 
treatments or measures outcomes. Furthermore, potential outcomes are defi ned over 
the set of treatments that the subject itself receives, not the treatments assigned to 
other subjects. In technical parlance, the “solely” assumption is termed excludability 
and the “itself ” assumption is termed  non- interference.

2.7.1 Excludability

When we defi ne two, and only two, potential outcomes based on whether the treat-
ment is administered, we implicitly assume that the only relevant causal agent is 
receipt of the treatment. Because the point of an experiment is to isolate the causal 
eff ect of the treatment, our schedule of potential outcomes excludes from consider-
ation factors other than the treatment. When conducting an experiment, therefore, 
we must defi ne the treatment and distinguish it from other factors with which it may 
be correlated. Specifi cally, we must distinguish between di , the treatment, and zi , a 
variable that indicates which observations have been allocated to treatment or con-
trol. We seek to estimate the eff ect of di , and we assume that the treatment assign-
ment zi has no eff ect on outcomes except insofar as it aff ects the value of di .

Th e term exclusion restriction or excludability refers to the assumption that zi can 
be omitted from the schedule of potential outcomes for Yi(1) and Yi(0). Formally, this 
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assumption may be written as follows. Let Yi(z, d) be the potential outcome when 
zi = z and di = d, for z � (0, 1) and for d � (0, 1). For example, if zi = 1 and 
di = 1, the subject is assigned to the treatment group and receives the treatment. 
We can also envision other combinations. For example, if zi = 1 and di = 0, the 
subject is assigned to the treatment group but for some reason does not receive the 
treatment. Th e exclusion restriction assumption is that Yi(1, d) = Yi(0, d). In other 
words, potential outcomes respond only to the input from di ; the value of zi is irrele-
vant. Unfortunately, this assumption cannot be verifi ed empirically because we never 
observe both Yi(1, d) and Yi(0, d) for the same subject.

Th e exclusion restriction breaks down when random assignment sets in motion 
causes of Yi other than the treatment di . Suppose the treatment in our running exam-
ple were defi ned as whether or not a woman council head presides over deliberations 
about village priorities. Our ability to estimate the eff ect of this treatment would be 
jeopardized if nongovernmental aid organizations, sensing that newly elected women 
will prioritize clean water, were to redirect their eff orts to promote water sanitation 
to  male- led villages. If outside aid fl ows to  male- led villages, obviating the need for 
male village council leaders to allocate their budgets to water sanitation, the apparent 
diff erence between water sanitation budgets in councils led by women and councils 
led by men will exaggerate the true eff ect of the treatment, as defi ned above.11 Even if 
it were the case that women council leaders have no eff ect on their own villages’ bud-
gets, the behavior of the NGOs could generate diff erent average budgets in  male- and 
 female- led villages.

Asymmetries in measurement represent another threat to the excludability assump-
tion. Suppose, for example, that in our study of Indian villages, we were to dispatch 
one group of research assistants to measure budgets in the treatment group and a 
diff erent group of assistants to measure budgets in the control group. Each group 
of assistants may apply a diff erent standard when determining what expenditures 
are to be classifi ed as contributing to water sanitation. Suppose the research assis-
tants in the treatment group were to use a more generous accounting standard—they 
tend to exaggerate the amount of money that the village allocates to water sanitation. 
When we compare average budgets in the treatment and control groups, the estimated 
treatment eff ect will be a combination of the true eff ect of female village heads on 
budgets and accounting procedures that exaggerate the amount of money spent on 
water sanitation in those villages. Presumably, when we envisioned the experiment 
and what we might learn from it, we sought to estimate only the fi rst of these two 
eff ects. We wanted to know the eff ect of female leadership on budgets using a consis-
tent standard of accounting.

11 Whether an excludability violation occurs depends on how a treatment effect is defined. If one were 
to define the effect of electing a woman to include the compensatory behavior of NGOs, this assumption 
would no longer be violated.
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To illustrate the consequences of measurement asymmetry, we may write out 
a simple model in which outcomes are measured with error. Under this scenario, 
the usual schedule of potential outcomes expands to refl ect the fact that outcomes 
are infl uenced not only by di , but also by zi , which determines which set of research 
assistants measure the outcome. Suppose that among untreated units we observe 
Yi(0)* = Yi(0) + ei0, where ei0 is the error that is made when measuring the poten-
tial outcome if an observation is assigned to the control group. For treated units, let 
Yi(1)* = Yi(1) + ei1. What happens if we compare average outcomes among treated 
and untreated units? Th e expected value of the  diff erence- in- means estimator from 
equation (2.14) is

E£am
1 Yi

m -

a
N
m + 1Yi

N - m
§ = E[Yi(1)* � Di = 1] - E[Yi(0)* � Di = 0]

 = E[Yi(1) � Di = 1] + E[ei1 � Di = 1] - E[Yi(0) � Di = 0] - E[ei0 � Di = 0]. (2.16)

Comparing equation (2.16) to equation (2.14) reveals that the  diff erence- in- means 
estimator is biased when the measurement errors in the treated and untreated groups 
have diff erent expected values:

 E[ei1 � Di = 1] � E[ei0 � Di = 0]. (2.17)

In this book, when we speak of a “breakdown in symmetry,” we have in mind pro-
cedures that may distort the expected diff erence between treatment and control 
outcomes.

What kinds of experimental procedures bolster the plausibility of the exclud-
ability assumption? Th e broad answer is anything that helps ensure uniform handling 
of treatment and control groups. One type of procedure is  double- blindness— neither 
the subjects nor the researchers charged with measuring outcomes are aware of 
which treatments the subjects receive, so that they cannot consciously or uncon-
sciously distort the results. Another procedure is parallelism in the administration 
of an experiment: the same questionnaires and survey interviewers should be used 
to assess outcomes in both treatment and control groups, and both groups’ outcomes 
should be gathered at approximately the same time and under similar conditions. If 
outcomes for the control group are gathered in October, but outcomes in the treat-
ment group are gathered in November, symmetry may be jeopardized.

Th e exclusion restriction cannot be evaluated unless the researcher has stated 
precisely what sort of treatment eff ect the experiment is intended to measure and 
designed the experiment accordingly. Depending on the researcher’s objective, the 
control group may receive a special type of treatment so that the treatment vs. con-
trol comparison isolates a particular aspect of the treatment. A classic example of a 
research design that attempts to isolate a specifi c cause is a pharmaceutical trial in 
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which an experimental pill is administered to the treatment group while an identi-
cal sugar pill is administered to the control group. Th e aim of administering a pill 
to both groups is to isolate the pharmacological eff ects of the ingredients, holding 
constant the eff ect of merely taking some sort of pill. In the village council exam-
ple, a researcher may wish to distinguish the eff ects of female leadership of local 
councils from the eff ects of merely appointing  non- incumbents to the headship. In 
principle, one could compare districts with randomly assigned women heads to dis-
tricts with randomly assigned term limits, a policy that has the eff ect of bringing 
 non- incumbents into leadership roles. Th is approach to isolating causal mechanisms 
is revisited again in Chapter 10, where we discuss designs that attempt to diff erentiate 
the active ingredients in a multifaceted treatment.

Protecting the theoretical integrity of the treatment vs. control comparison is of 
paramount importance in experimental design. In the case of the village budget study, 
the aim is to estimate the budgetary consequences of having a randomly allocated 
female village head, not the consequences of using a diff erent measurement standard 
to evaluate outcomes in treatment and control villages. Th e same argument goes for 
other aspects of research activity that might be correlated with treatment assignment. 
For example, if the aim is to measure the eff ect of female leadership on budgets per 
se, bias may be introduced if one sends a delegation of researchers to monitor village 
council deliberations in  women- headed villages only. Now the observed treatment 
eff ect is a combination of the eff ect of female leadership and the eff ect of research 
observers. Whether one regards the presence of the research delegation as a distortion 
of measurement or an unintended pathway by which assignment to treatment aff ects 
the outcome, the formal structure of the problem remains the same. Th e expected 
outcome of the experiment no longer reveals the causal eff ect we set out to estimate.

Th e symmetry requirement does not rule out  cross- cutting treatments. For exam-
ple, one could imagine a version of India’s reservation policy that randomly assigned 
some village council seats to women, others to people from lower castes, and still 
others to women from lower castes. When we discuss factorial designs in Chapter 9, 
we will stress what can be learned from deploying several treatments in combination 
with one another. Th e point of these more complex designs is to learn about combina-
tions of treatments while still preserving symmetry: randomly assigning treatments 
both alone and in combination with one another allows the researcher to distinguish 
empirically between having a female village head and having a female village head 
who is also from a lower caste.

Finally, let’s revisit the case in which other actors intervene in response to your 
treatment assignments. For example, suppose that in anticipation of greater spend-
ing on water sanitation, interest groups devote special attention to lobbying village 
councils headed by women. Or it may go the other way: interest groups focus greater 
eff orts on villages headed by men because they believe that’s where they will meet the 
most resistance from budget makers. Whether interest group interference violated 
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the assumption of excludability depends on how we defi ne the treatment eff ect. Inter-
est group activity presents no threat to the exclusion restriction if we defi ne the eff ect 
of installing a female council head to include all of the indirect repercussions that 
it could have on interest group activity. If, however, we seek to estimate the specifi c 
eff ect of having female council heads without any interference by interest groups, our 
experimental design may be inadequate unless we can fi nd a way to prevent inter-
est groups from responding strategically. Th ese kinds of scenarios again underscore 
the importance of clearly stating the experimental objectives so that researchers and 
readers can assess the plausibility of the exclusion restriction.

2.7.2  Non- Interference

For ease of presentation, the above discussion only briefl y mentioned an assump-
tion that plays an important role in the defi nition and estimation of causal eff ects. 
Th is assumption is sometimes dubbed the Stable Unit Treatment Value Assumption, 
or SUTVA, but we refer to it by a more accessible name,  non- interference.12 In the 
notation used above, expressions such as Yi(d) are written as though the value of 
the potential outcome for unit i depends only upon whether or not the unit itself 
gets the treatment (whether d equals one or zero). A more complete notation would 
express a more extensive schedule of potential outcomes depending on which treat-
ments are administered to other units. For example, for Village 1 we could write down 
all of the potential outcomes if only Village 1 is treated, if only Village 2 is treated, if 
Villages 1 and 2 are treated, and so forth. Th is schedule of potential outcomes quickly 
gets out of hand. Suppose we listed all of the potential outcomes if exactly two of the 
seven villages are treated: there would now be 21 potential outcomes for each village. 
Clearly, if our study involves just seven villages, we have no hope of saying anything 
meaningful about this complex array of causal eff ects unless we make some simplify-
ing assumptions.

Th e  non- interference assumption cuts through this complexity by ignoring the 
potential outcomes that would arise if subject i were aff ected by the treatment of 
other subjects. Formally, we reduce the schedule of potential outcomes Yi(d), where d 
describes all of the treatments administered to all subjects, to a much simpler sched-
ule Yi(d), where d refers to the treatment administered to subject i.13 In the context 
of our example,  non- interference implies that the sanitation budget in one village is 
unaff ected by the gender of the council heads in other villages.  Non- interference is an 
assumption common to both experimental and observational studies.

12 The term “stable” in SUTVA refers to the stipulation that the potential outcomes for a given village 
remain stable regardless of which other villages happen to be treated. The technical aspects of this term are 
discussed in Rubin 1980 and Rubin 1986.
13 Implicit in this formulation of potential outcomes is the assumption that potential outcomes are unaf-
fected by the overall pattern of actual or assigned treatments. In other words, Yi(z, d) = Yi(z, d).

114400_02_021-050_r2_rs.indd   43114400_02_021-050_r2_rs.indd   43 16/03/12   7:10 PM16/03/12   7:10 PM



44  CAUSAL INFERENCE AND EXPERIMENTATION

Is  non- interference realistic in this example? It is diffi  cult to say without more 
detailed information about communication between villages and the degree to which 
their budget allocations are interdependent. If the collection of villages were dis-
persed geographically, it might be plausible to assume that the gender of the village 
head in one village has no consequences for outcomes in other villages. On the other 
hand, if villages were adjacent, the presence of a woman council head in one vil-
lage might encourage women in other villages to express their policy demands more 
forcefully. Proximal villages might also have interdependent budgets; the more one 
village spends on water sanitation, the less the neighboring village needs to spend in 
order to maintain its own water quality.

Th e estimation problems that interference introduces are potentially quite com-
plicated and unpredictable. Untreated villages that are aff ected by the treatments that 
nearby villages receive no longer constitute an untreated control group. If women 
council heads set an example of water sanitation spending that is then copied by neigh-
boring villages headed by men, a comparison between average outcomes in treatment 
villages and ( semi- treated) control villages will tend to understate the average treat-
ment eff ect as defi ned in equation (2.3), which is usually understood to refer to the 
contrast between treated potential outcomes and completely untreated potential out-
comes. On the other hand, if female council heads cause neighboring villages headed 
by men to free ride on water sanitation projects and allocate less of their budget to 
it, the apparent diff erence in average budget allocations will exaggerate the average 
treatment eff ect. Given the vagaries of estimation in the face of interference, research-
ers oft en try to design experiments in ways that minimize interference between units 
by spreading them out temporally or geographically. Another approach, discussed 
at length in Chapter 8, is to design experiments in ways that allow the researcher to 
detect spillover between units. Instead of treating interference as a nuisance, these 
more complex experimental designs aim to detect evidence of communication or stra-
tegic interaction among units.

SUMMARY

Th is chapter has limited its purview to a class of randomized experiments in which 
treatments are deployed exactly as assigned and outcomes are observed for all of the 
assigned subjects. Th is class of studies is a natural starting point for discussing core 
assumptions and what they imply for research design. Th e chapters that follow will 
introduce further assumptions in order to handle the complications that arise due to 
noncompliance (Chapters 5 and 6) and attrition (Chapter 7).

We began by defi ning a causal eff ect as the diff erence between two potential out-
comes, one in which a subject receives treatment and the other in which the subject 
does not receive treatment. Th e causal eff ect for any given subject is not directly observ-
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able. However, experiments provide unbiased estimates of the average treatment eff ect 
(ATE) among all subjects when certain assumptions are met. Th e three assumptions 
invoked in this chapter are random assignment, excludability, and  non- interference.

 1. Random assignment: Treatments are allocated such that all units have a known 
probability between 0 and 1 of being placed into the treatment group. Simple 
random assignment or complete random assignment implies that treatment 
assignments are statistically independent of the subjects’ potential outcomes.

   Th is assumption is satisfi ed when all treatment assignments are determined 
by the same random procedure, such as the fl ip of a coin. Because random 
assignment may be compromised by those allocating treatments or assisting 
subjects, steps should be taken to minimize the role of discretion.

 2. Excludability: Potential outcomes respond solely to receipt of the treatment, not 
to the random assignment of the treatment or any indirect  by- products of ran-
dom assignment. Th e treatment must be defi ned clearly so that one can assess 
whether subjects are exposed to the intended treatment or something else.

   Th is assumption is jeopardized when (i) diff erent procedures are used to 
measure outcomes in the treatment and control groups and (ii) research activi-
ties, other treatments, or  third- party interventions other than the treatment of 
interest diff erentially aff ect the treatment and control groups.

 3.  Non- interference: Potential outcomes for observation i refl ect only the treat-
ment or control status of observation i and not the treatment or control status of 
other observations. No matter which subjects the random assignment allocates 
to treatment or control, a given subject’s potential outcomes remain the same.

   Th is assumption is jeopardized when (i) subjects are aware of the treatments 
that other subjects receive, (ii) treatments may be transmitted from treated to 
untreated subjects, or (iii) resources used to treat one set of subjects diminish 
resources that would otherwise be available to other subjects. See Chapter 10 for 
a more extensive list of examples.

Random assignment is diff erent from the other two assumptions in that it refers 
to a procedure and the manner in which researchers carry it out. Excludability and 
 non- interference, on the other hand, are substantive assumptions about the ways in 
which subjects respond to the allocation of treatments. When assessing excludability 
and  non- interference in the context of a particular experiment, the fi rst step is to 
carefully consider how the causal eff ect is defi ned. Do we seek to study the eff ect of 
electing women to village council positions or rather the eff ect of electing women 
from a pool of candidates that consists only of women? When defi ning the treat-
ment eff ect of installing a female village council head, is the appropriate comparison 
a village with male leadership, or a  male- led village with no neighboring  female- led 
villages? Attending to these subtleties encourages a researcher to design more exact-
ing experimental comparisons and to interpret the results with greater precision. 
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 Attentiveness to these core assumptions also helps guide experimental investiga-
tion, urging researchers to explore the empirical consequences of diff erent research 
designs. A series of experiments in a particular domain may be required before a 
researcher can gauge whether subjects seem to be aff ected by the random assign-
ment over and above the treatment (a violation of excludability) or by the treatments 
administered to other units (interference).

SUGGESTED READINGS

Holland (1986) and Rubin (2008) provide  non- technical introductions to potential outcomes 
notation. Fisher (1935) and Cox (1954) are two classic books on experimental design and anal-
ysis; Dean and Voss (1998) and Kuehl (1999) off er more modern treatments. See Rosenbaum 
and Rubin (1983) on the distinctive statistical properties of randomly assigned treatments.

EXERCISES: CHAPTER 2

1. Potential outcomes notation:
(a) Explain the notation “Yi(0).”
(b) Explain the notation “Yi(0) � Di = 1” and contrast it with the notation “Yi(0) � di = 1.”
(c) Contrast the meaning of “Yi(0)” with the meaning of “Yi(0) � Di = 0.”
(d) Contrast the meaning of “Yi(0) � Di = 1” with the meaning of “Yi(0) � Di = 0.”
(e) Contrast the meaning of “E[Yi(0)]” with the meaning of “E[Yi(0) � Di = 1].”
(f) Explain why the “selection bias” term in equation (2.15), E[Yi(0) � Di = 1] -

E[Yi(0) � Di = 0], is zero when Di is randomly assigned.
2. Use the values depicted in Table 2.1 to illustrate that E[Yi(0)] - E[Yi(1)] = E[Yi(0) - Yi(1)].
3. Use the values depicted in Table 2.1 to complete the table below.

(a) Fill in the number of observations in each of the nine cells.
(b) Indicate the percentage of all subjects that fall into each of the nine cells. (Th ese cells 

represent what is known as the joint frequency distribution of Yi(0) and Yi(1).)
(c) At the bottom of the table, indicate the proportion of subjects falling into each category 

of Yi(1). (Th ese cells represent what is known as the marginal distribution of Yi(1).)
(d) At the right of the table, indicate the proportion of subjects falling into each category 

of Yi(0) (i.e., the marginal distribution of Yi(0)).
(e) Use the table to calculate the conditional expectation that E[Yi(0) � Yi(1) 7 15]. 

(Hint: Th is expression refers to the expected value of Yi(0) given that Yi(1) is greater 
than 15.)

(f) Use the table to calculate the conditional expectation that E[Yi(1) � Yi(0) 7 15].

Yi(0)
Yi(1) Marginal distribution 

of Yi(0)15 20 30

10

15

20

Marginal distribution 
of Yi(1) 1.0
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4. Suppose that the treatment indicator di is either 1 (treated) or 0 (untreated). Defi ne the av-
erage treatment eff ect among the treated, or ATT for short, as a

N
1 tidi>a N

1 di . Using the 
equations in this chapter, prove the following claim: “When treatments are allocated us-
ing complete random assignment, the ATT is, in expectation, equal to the ATE. In other 
words, taking expectations over all possible random assignments, E[ti � Di = 1] = E[ti], 
where ti is a randomly selected observation’s treatment eff ect.

5. A researcher plans to ask six subjects to donate time to an adult literacy program. Each 
subject will be asked to donate either 30 or 60 minutes. Th e researcher is considering 
three methods for randomizing the treatment. One method is to fl ip a coin before talk-
ing to each person and to ask for a  30- minute donation if the coin comes up heads or a 
 60- minute donation if it comes up tails. Th e second method is to write “30” and “60” 
on three playing cards each, and then shuffl  e the six cards. Th e fi rst subject would be as-
signed the number on the fi rst card, the second subject would be assigned the number 
on the second card, and so on. A third method is to write each number on three diff erent 
slips of paper, seal the six slips into envelopes, and shuffl  e the six envelopes before talk-
ing to the fi rst subject. Th e fi rst subject would be assigned the fi rst envelope, the second 
subject would be assigned the second envelope, and so on.
(a) Discuss the strengths and weaknesses of each approach.
(b) In what ways would your answer to (a) change if the number of subjects were 600 

instead of 6?
(c) What is the expected value of Di (the assigned number of minutes) if the coin toss 

method is used? What is the expected value of Di if the sealed envelope method is 
used?

6. Many programs strive to help students prepare for college entrance exams, such as the 
SAT. In an eff ort to study the eff ectiveness of these preparatory programs, a researcher 
draws a random sample of students attending public high school in the United States, and 
compares the SAT scores of those who took a preparatory class to those who did not. Is 
this an experiment or an observational study? Why?

7. Suppose that an experiment were performed on the villages in Table 2.1, such that two vil-
lages are allocated to the treatment group and the other fi ve villages to the control group. 
Suppose that an experimenter randomly selects Villages 3 and 7 from the set of seven 
villages and places them into the treatment group. Table 2.1 shows that these villages have 
unusually high potential outcomes.
(a) Defi ne the term unbiased estimator.
(b) Does this allocation procedure produce upwardly biased estimates? Why or why not?
(c) Suppose that instead of using random assignment, the researcher placed Villages 3 

and 7 into the treatment group because the treatment could be administered inex-
pensively in those villages. Explain why this procedure is prone to bias.

8. Peisakhin and Pinto14 report the results of an experiment in India designed to test the 
eff ectiveness of a policy called the Right to Information Act (RTIA), which allows citi-
zens to inquire about the status of a pending request from government offi  cials. In their 
study, the researchers hired confederates, slum dwellers who sought to obtain ration cards 
(which permit the purchase of food at low cost). Applicants for such cards must fi ll out a 

14 Peisakhin and Pinto 2010.
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form and have their residence and income verifi ed by a government agent. Slum dwellers 
widely believe that the only way to obtain a ration card is to pay a bribe. Th e  researchers 
instructed the confederates to apply for ration cards in one of four ways, specifi ed by the 
researchers. Th e control group submitted an application form at a government offi  ce; the 
RTIA group submitted a form and followed it up with an offi  cial Right to Information 
request; the NGO group submitted a letter of support from a local nongovernmental 
 organization (NGO) along with the application form; and fi nally, a bribe group submitted 
an application and paid a small fee to a person who is known to facilitate the processing 
of forms.

Bribe RTIA NGO Control

Number of confederates in the study 24 23 18 21

Number of confederates who had residence verifi cation 24 23 18 20

Median number of days to residence verifi cation 17 37 37 37

Number of confederates who received a ration card 
within one year

24 20 3 5

(a) Interpret the apparent eff ects of the treatments on the proportion of applicants who 
have their residence verifi ed and the speed with which verifi cation occurred.

(b) Interpret the apparent eff ects of the treatments on the proportion of applicants who 
actually received a ration card.

(c) What do these results seem to suggest about the eff ectiveness of the Right to Infor-
mation Act as a way of helping slum dwellers obtain ration cards?

9. A researcher wants to know how winning large sums of money in a national lottery aff ects 
people’s views about the estate tax. Th e researcher interviews a random sample of adults 
and compares the attitudes of those who report winning more than $10,000 in the lottery 
to those who claim to have won little or nothing. Th e researcher reasons that the lottery 
chooses winners at random, and therefore the amount that people report having won is 
random.
(a) Critically evaluate this assumption. (Hint: are the potential outcomes of those who 

report winning more than $10,000 identical, in expectation, to those who report 
winning little or nothing?)

(b) Suppose the researcher were to restrict the sample to people who had played the 
lottery at least once during the past year. Is it now safe to assume that the potential 
outcomes of those who report winning more than $10,000 are identical, in expecta-
tion, to those who report winning little or nothing?

10. Suppose researchers seek to assess the eff ect of receiving a free newspaper subscription 
on students’ interest in politics. A list of student dorm rooms is drawn up and sorted 
randomly. Dorm rooms in the fi rst half of the randomly sorted list receive a newspaper 
at their door each morning for two months; dorm rooms in the second half of the list do 
not receive a paper.
(a) University researchers are sometimes required to disclose to subjects that they are 

participating in an experiment. Suppose that prior to the experiment, researchers 
distributed a letter informing students in the treatment group that they would be 
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receiving a newspaper as part of a study to see if newspapers make students more 
interested in politics. Explain (in words and using potential outcomes notation) how 
this disclosure may jeopardize the excludability assumption.

(b) Suppose that students in the treatment group carry their newspapers to the cafeteria 
where they may be read by others. Explain (in words and using potential outcomes 
notation) how this may jeopardize the  non- interference assumption.

11. Several randomized experiments have assessed the eff ects of drivers’ training classes on 
the likelihood that a student will be involved in a traffi  c accident or receive a ticket for 
a moving violation.15 A complication arises because students who take drivers’ training 
courses typically obtain their licenses faster than students who do not take a course.16 (Th e 
reason is unknown but may refl ect the fact that those who take the training are better 
prepared for the licensing examination.) If students in the control group on average start 
driving much later, the proportion of students who have an accident or receive a ticket 
could well turn out to be higher in the treatment group. Suppose a researcher were to 
compare the treatment and control group in terms of the number of accidents that occur 
within three years of obtaining a license.
(a) Does this measurement approach maintain symmetry between treatment and con-

trol groups?
(b) Would symmetry be maintained if the outcome measure were the number of acci-

dents per mile of driving?
(c) Suppose researchers were to measure outcomes over a period of three years start-

ing the moment at which students were randomly assigned to be trained or not. 
Would this measurement strategy maintain symmetry? Are there drawbacks to this 
approach?

12. A researcher studying 1,000 prison inmates noticed that prisoners who spend at least 
three hours per day reading are less likely to have violent encounters with prison staff . 
Th e researcher therefore recommends that all prisoners be required to spend at least three 
hours reading each day. Let di be 0 when prisoners read less than three hours each day 
and 1 when prisoners read more than three hours each day. Let Yi(0) be each prisoner’s 
potential number of violent encounters with prison staff  when reading less than three 
hours per day, and let Yi(1) be each prisoner’s potential number of violent encounters 
when reading more than three hours per day.
(a) In this study, nature has assigned a particular realization of di to each subject. When 

assessing this study, why might one be hesitant to assume that E[Yi(0) � Di = 0] =
E[Yi(0) � Di = 1] and E[Yi(1) � Di = 0] = E[Yi(1) � Di = 1]?

(b) Suppose that researchers were to test this researcher’s hypothesis by randomly 
assigning 10 prisoners to a treatment group. Prisoners in this group are required to 
go to the prison library and read in specially designated carrels for three hours each 
day for one week; the other prisoners, who make up the control group, go about 
their usual routines. Suppose, for the sake of argument, that all prisoners in the 
treatment group in fact read for three hours each day and that none of the prisoners 

15 See Roberts and Kwan 2001.
16 Vernick et al. 1999.
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in the control group read at all during the week of the study. Critically evaluate the 
excludability assumption as it applies to this experiment.

(c) State the assumption of  non- interference as it applies to this experiment.
(d) Suppose that the results of this experiment were to indicate that the reading treat-

ment sharply reduces violent confrontations with prison staff . How does the 
 non- interference assumption come into play if the aim is to evaluate the eff ects of a 
policy whereby all prisoners are required to read for three hours?
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