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Abstract 

 

Randomization has emerged as preferred empirical strategy for researchers in a variety of fields 

over the past years. While the advantages of RCTs in terms of identification are obvious, the 

statistical analysis of experimental data is not without challenges. In this paper we focus on 

multiple hypothesis testing as one statistical issue commonly encountered in economic research.  

In many cases, researchers are not only interested in the main treatment effect, but also want to 

investigate the degree to which the impact of a given treatment varies across specific geographic 

or socio-demographic groups of interest. In order to test for such heterogeneous treatment 

effects, researchers generally either use subsample analysis or interaction terms. While both 

approaches have been widely applied in the empirical literature, they are generally not valid 

statistically, and, as we demonstrate in this paper, lead to an almost linear increase in the 

likelihood of false discoveries. We show that the likelihood of finding one out of ten interaction 

terms statistically significant in standard OLS regressions is 42%, and that two thirds of 

statistically significant interaction terms using PROGRESA data can be presumed to represent 

false discoveries. We demonstrate that applying correction procedures developed in the statistics 

literature can fully address this issue, and discuss the implications of multiple testing adjustments 

for power calculations and experimental design. While multiple testing corrections do require 

large sample sizes ex-ante, the adjustments necessary to preserve power when corrections are 

applied appear relatively small.   
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I. INTRODUCTION 

 

Few things have shaped empirical work on economics as much as the arrival and establishment 

of randomized controlled trials (RCTs) over the past decade. Initially restricted to a handful of 

researchers, the number of randomized experiments has grown exponentially across all 

continents over the past years.  The projects listed on the Innovations for Poverty Actions (IPA) 

and the Abdul Latif Jameel Poverty Action Lab (JPAL) websites suggests that currently more 

than 100 RCT studies are either planned or in the field (JPAL 2011); John List’s “Field 

Experiments” website currently lists more than 250 field experiments (List 2011).   

 

One of the main advantages of experiments is the relative simplicity of the statistical analysis 

required to conduct causal inference. With properly done randomization, estimating causal 

effects corresponds to a simple conditional or unconditional mean comparison between treatment 

and control groups, with limited need or scope for more sophisticated empirical models. While 

little econometric work has focused on randomized trials until recently, a few econometric 

challenges associated with experimental work have emerged over the past few years (Hahn, 

Hirano and Karlan 2011).  This paper focuses on the challenge of estimating (ex-post) 

heterogeneous treatment effects within experimental settings not initially designed to capture 

such differences. Most experiments are designed to estimate the average effect of a given 

treatment of interest. However, researchers may become interested in the interactions of a 

treatment with some baseline characteristics of interest during or after data collection, and wish 

to test for  heterogeneous treatment effects ex-post. In some cases, researchers may learn during 

field work that the magnitude of the treatment effect hinges on a variable measured at baseline.  

In other cases, researchers may find that the theoretical framework applied has clear predictions 

regarding the expected behavioral changes across different subgroups of interest.  

 

In order to provide some sense of how common ex-post testing for heterogeneous treatment 

effects is in the literature based on experimental data, we review all articles using field 

experiment data published in the top 10 journals according to the 2009 Engemann and Wall 

ranking (2009) as well as the Journal of Development Economics (the top field journal) from 

2005 and 2010. Out of 34 articles we classified as field-experiment-based, 26 (76%) estimate 
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separate treatment effects for subgroups, and 10 articles (29%) estimate treatment effects for ten 

or more subgroups.  

 

While testing for heterogeneous treatment effects through interaction terms or subgroup analyses 

is clearly desirable from a research perspective, applying traditional standard errors and p-values 

is not appropriate. Given that each interaction term represents a separate hypothesis beyond the 

original experimental design, “trying out” multiple interaction terms corresponds to multiple 

hypothesis testing, and results in a substantially increased false discovery risk in the empricial 

analysis.  

 

To illustrate the severity of this issue, we use data from the Programa de Educación, Salud y 

Alimentación (PROGRESA) in Mexico, and run Monte-Carlo simulations to estimate a large 

number of heterogeneous treatment effects within the experimental data. We show that any 

researcher randomly choosing 10 baseline variables as proxy for an underlying characteristic of 

interest has a 62% chance of finding at least one variable significant at the 5% level.  Given that 

the joint (Bernoulli) distribution for 10 independent binary variables implies a cumulative 

probabilities of finding at least one irrelevant factor significant with 0.05α =  is 40%, this implies 

that about two thirds of the significant interactions uncovered in our PROGRESA regressions 

represent false discoveries.   

 

The multiple hypothesis testing highlighted in this paper issue is not new, and has been faced by 

researchers in several other disciplines such as genomics or brain imaging over the past two 

decades. Possibly motivated by applications in these quickly evolving fields, recent statistical 

research has produced a number of powerful methods to correct for multiple hypothesis testing 

as summarized in Farcomeni (2008). Some of these correction methods can attain high power 

even when testing millions of hypotheses and are thus suitable for large-scale multiple testing 

problems in genomics or brain imaging. More importantly, these corrections are relatively easy 

to implement and very effective in keeping the risk of false discoveries low.  

 

To provide a better sense of the study design implications of multiple testing, we compute ex-

ante adjustments needed to sample size if researchers plan to investigate one or multiple 
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interaction effects ex-post. We show that the required sample size adjustments are relatively 

small as long as the number of tested heterogeneous treatment effects is reasonably small.  

 

This results presented in this paper contribute to the recent discussion of structure and role of 

field experiments. Card, DellaVigna and Malmendier (2011) review the literature on field 

experiments over the last 35 years, finding that the analysis in most field experiments is focused 

on providing descriptive data instead of testing theories.  The paper is also related to the broader 

literature on heterogeneous treatment effects discussed in Angrist (2004), Green and Kern (2010) 

as well as Imai and Strauss (2011). While these papers primarily focus on optimal model 

specification in the presence of heterogeneous treatment effect, we mostly focus on the multiple-

testing issue associated with sequential subgroup testing in this paper.  

 

The rest of the paper is organized as follows: We start with a review of the methods used in 

recently published papers in the field in section 2.  We discuss the theoretical and empirical 

distribution of heterogeneous treatment effects using PROGRESA data in Section 3.  We 

introduce the corrections for multiple testing proposed by the statistics literature in Section 4, 

and analyze the practical implications of the various correction models in Section 5. In Section 6, 

we discuss the implications of multiple testing for study design and power calculations; section 7 

concludes. 

 

II. LITERATURE REVIEW 

 

Based on the Engemann and Wall (2009) ranking of Journals, we surveyed articles in the top 10 

ranked journals as well as the Journal of Development Economics as the most commonly cited 

field journal.  We use the classification proposed by Harrison and List (2004) as a guide to 

determine how to classify field experiments. We focus exclusively on “natural field 

experiments,” which Harrison and List describe as experiments where a “non-standard
1
 subject 

pool” makes decisions where there is a “field context in either the commodity, task, or 

information set that the subjects can use” and “the environment is one where the subjects 

                                                           
1
  In the context of experiments in Harrison and List (2004) , a standard subject pool would be 

undergraduates recruited to perform an experiment in a laboratory setting 
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naturally undertake these tasks and where the subjects do not know that they are in an 

experiment.” (Harrison and List 2004, p. 1014) 

 

In order to be considered for our literature review, a paper must present evidence from a study 

where a treatment intervention is randomly assigned by design of the study.  Therefore, natural 

experiments and field experiments where treatments are not randomly assigned are excluded 

from our review.
2
  Furthermore, we exclude papers that focus on econometric methods using 

data from natural field experiments. We refer to the papers that satisfy this definition as “strict” 

natural field experiments.
 
While this classification may appear restrictive, it yields a clear 

decision rule allowing for a consistent review of the existing literature of interest. The main point 

made in this paper clearly applies to a larger set of empirical papers. 

 

Table 1 shows the journal list, as well as the total number of articles, the number of “strict” 

 natural field experiments.  

 

TABLE 1 

“STRICT” NATURAL FIELD EXPERIMENTS PUBLISHED 2005-2009 

Journal 

Rank 
Journal Name 

Total 

Articles 

"Strict Natural 

Field 

Experiments" 

1 Quarterly Journal of Economics 283 11 

2 Journal of Political Economy 296 1 

3 Econometrica 420 5 

4 American Economic Review 644 8 

5 Review of Economic Studies 292 0 

6 Journal of Labor Economics 201 0 

7 Journal of Economic Growth 87 0 

8 Review of Economics and Statistics 456 1 

9 Economic Journal 498 1 

10 American Economic Review Papers and Proceedings 592 5 

30 Journal of Development Economics 461 2 

  Total 4230 34 

                                                           
2
 Examples include the analysis of data where subjects were quasi-randomly matched as in studies of choices 

in speed dating (Fisman et al, 2006), the impact of random roommate assignment and random assignment by 

lottery (Angrist, Bettenger and Kremer 2006). 
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Of 4,230 articles surveyed in these 11 journals over the period 2005-2009, 34 articles feature 

evidence from strict natural field experiments.  Some of the reviewed journals did not publish 

any study based on a field experiment (Journal of Labor Economics and Journal of Economic 

Growth), while the Quarterly Journal of Economics published more than 10 studies based on 

experiments fitting our “strict” natural field experiment description over the same period.   

 

In Table 2 we take a closer look at the econometric strategy employed by articles 

featuring evidence from strict natural field experiments.  We do not show the full title of each 

paper, but rather show the paper’s index number, and provide the full listing as well as references 

in the Appendix. We report two measures of heterogeneous treatment effect testing: the number 

of subgroups for which treatment effects are estimated, and the number of interaction effects 

between the treatment variable and baseline characteristics tested.  

 

In order to classify a reported result as a “heterogeneous treatment effect test” we 

followed a series of rules avoiding double-counting of treatment effects as well as incorrect 

classifications of regressions reflecting a particular study design.  First, we only consider tests 

reported in the main tables of a paper, and exclude all results either shown in an appendix or only 

mentioned in the text. Second, we do not count reported tests reflecting the original research 

design. In many instances, researchers test for increasing effects over time, and also for 

heterogeneous treatment effects across different geographic sites.  While one could argue that 

different time periods and sites reflect distinct sub-groups, we consider them as separate 

experiments, and thus do not count them as instances of heterogeneous treatment tests.  We also 

do not count heterogeneous treatment effect tests based on baseline characteristics that are 

measured after the experimental randomization, which raise a whole set of other issues.   

 

In some cases, papers combine subgroup analysis with estimates of interactions with 

treatments. We count the number of subgroups and interactions separately, and simply report the 

total number of subgroups and the total number of interactions.  Furthermore, we only count 

each interaction or subgroup analysis once, even if they are considered for more than one 

dependent variable.  Multiple dependent variable testing is indeed very common in the literature 



7 

 

as well, and the associated statistical problem similar to the heterogeneous treatment effects 

analyzed in this paper (Duflo, Glennester, et al 2008).  The complications from considering 

dependent variables measured multiple times are discussed in recent work by McKenzie (2010).   

 

TABLE 2 

STRUCTURE OF EMPIRICAL MODEL IN FIELD EXPERIMENTS 

Article 

Index 

Type(s) of Dependent 

Variable(s):  Binary, 

Continuous or boTh 

Number of Subsamples 
Number of Interactions 

Estimated 

1 T 2 0 

2 B 7 0 

3 C 0 4 

4 T 11 0 

5 T 16 11 

6 T 4 0 

7 T 0 0 

8 C 0 0 

9 C 0 0 

10 T 0 1 

11 T 2 4 

12 C 21 10 

13 B 0 0 

14 B 5 3 

15 C 0 3 

16 T 15 0 

17 B 0 1 

18 B 0 0 

19 T 6 1 

20 C 2 0 

21 C 0 0 

22 C 7 0 

23 C 10 0 

24 C 60 2 

25 C 3 11 

26 C 0 0 

27 T 1 1 

28 C 7 0 

29 B 4 14 

30 B 23 0 

31 T 2 2 
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32 C 0 2 

33 C 9 6 

34 B 0 0 

 

Out of the 34 papers analyzed, 21 articles (62%) estimate separate treatment effects for 

subgroups, while 16 articles (47%) estimate interaction effects between the treatment and 

baseline characteristics.  Only 8 articles (24%) neither estimate interaction effects nor consider 

the effect of treatment on subgroups.  In some cases, testing for heterogeneous treatment effects 

is extensive: As Table 2 shows, 10 articles (29%) estimated 10 or more subgroup or interaction 

effects.  Some examples of common interactions or subgroup analyses are sex, age, wealth and 

education. None of the article corrects (or mentions) multiple hypothesis testing in the empirical 

analysis 

 

III. TESTING FOR HETEROGENEOUS TREATMENT EFFECTS 

 

While most experiments are designed to investigate the average effects of a specific treatment of 

interest on a given outcome, researchers often may wish to investigate differences in the impact 

of the treatment by sex, ethnicity, income level, or other individual or household characteristics. 

In the simplest case, one may want to simply investigate one particular interaction of interest 

(possibly reflecting a particular model prediction or anecdotal evidence from the program 

rollout); in other instances, the researcher may simply be curious to see which factors modify an 

intervention’s impact. Testing for heterogeneous treatment effects without adjusting the 

estimated standard errors for multiple testing after the fact, however, is highly likely to result in 

incorrect statistical inference.  Given that 95% confidence intervals are constructed to allow for a 

false discovery probability of 0.05 on each interaction term, the probability of getting k 

significant p-values with zero true effects is given by the following binomial distribution: 

  

(1) ( )( , , ) (1 ) .k m k
m

f k m
k

α α α − 
= − 
 

 

Plugging in for 0.05α =  and 10m = , the probabilities of one, two, and more false discoveries 

with 10 different interaction terms are given by 31.5%, 7.5% and 1.2% as described in in Table 3 

below.  
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TABLE 3 

THEORETICAL (BINOMIAL) DISTRIBUTION OF FALSE DISCOVERIES WITH 10 RANDOM INTERACTION 

TERMS AND ALPHA=0.05. 

Event Probability 

No hypothesis significant 0.598 

One hypothesis significant 0.315 

Two hypothesis significant 0.075 

Three or more hypotheses significant 0.012 

 

Heterogeneous Treatment Effects in Practice: PROGRESA 

 

In order to illustrate how the distribution of estimated heterogeneous treatment effects looks in 

practice, we randomly test for such effects within the experimental data collected as part of the  

the Programa de Educación, Salud y Alimentación (PROGRESA). PROGRESA, now called 

OPORTUNIDADES , is a community-level randomized experiment designed to increase school 

attendance among the poor through a conditional cash transfer program. By providing a cash 

transfer to poor families large enough to compensate for lost wages from child labor
3
 (Skoufias 

2005), the conditional cash transfer program was aiming at changing parental schooling 

decisions.  

 

While PROGRESA’s impact on schooling has been well documented (Schultz 2004), it seems 

natural to ask whether the program impact was contingent on, or mediated by, specific household 

characteristics of interest at baseline. One may, for example, conjecture that the program impact 

increases with measures of household poverty or vulnerability. The PROGRESA baseline data 

from the 1997 includes a large array of measures one could use as potential markers for poverty: 

size of the household, access to piped water and electricity, asset holdings, characteristics of the 

dwelling, household size and many more. Given the difficulties associated with correctly 

                                                           
3
 A detailed description of the program as well as links to several evaluation studies are available at 

http://www.ifpri.org/dataset/mexico-evaluation-progresa. 
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measuring the income and wealth level of the household, it appears plausible that the interested 

researcher would consider a larger set of measures, and we shall for simplicity assume that each 

researcher uses 10 proxies in his analysis. While this may appear high at first sight, 10 

interaction terms appear fairly common in the literature: as our review shows, the average paper 

analyzes 6.4 subgroups and tests for 2.2 interaction effects. The researcher then estimates the 

following model:  

  

(2) ( ) ,
i i i i i i

y T W T xWα β δ λ ε= + + + +  

where iy is the outcome of interest (in this case schooling), T is the treatment indicator (1 if the 

household was targeted by PROGRESA), WI is one of the 10 poverty indicators coded, and 

i iT xW is the interaction between the poverty indicator and PROGRESA.  While we focus on 

interaction-term-based empirical models in our simulations, it is easy to see that the results will 

look virtually the same if separate regressions were conducted for each subgroup of interest.
4
  

Given that virtually any baseline variable could be interpreted as a proxy for household poverty 

or vulnerability, we code all available baseline variables with non-zero variation within the 

treatment and control groups into binary variables. The total list of binary indicators (148 binary 

variables) is shown in Appendix Table 2. In order to not make any assumptions regarding 

researchers’ choice we assume that each researcher randomly chooses 10 variables out of the set 

of 148, and runs 10 separate regressions as described in equation (1). We run a Monte-Carlo 

simulation with 10,000 experiments, where we randomly chose a set of 10 out the 148 variables 

to interact with the treatment in each round. The Monte-Carlo simulation can thus be viewed as 

an approximation of a setting where a large number of independent researchers work on a given 

data set, and each of them subjectively chooses 10 variables as proxies of poverty and 

vulnerability.  

 

The results of the Monte-Carlo experiment are displayed in Figure 1. With 10 random binary 

regressors from the PROGRESA baseline data, more than 62% of cases (or independent 

                                                           
4
 Conceptually the main difference between subgroup analysis and interaction terms is that stratified regressions 

allow all regression coefficients to vary across sub-groups; since most experimental regressions include either few or 

no control variables, and since these control variables can be presumed to be orthogonal to the treatment, the 

difference between subgroup analysis and interaction term based regressions is small in practice. 
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researchers picking 10 interaction terms) find at least one interaction term significant at the 5% 

level; in 17% of all cases, 2 interaction terms are significant, and in 4% of cases, 3 or more 

interaction terms are significant. 

 

 

Notes: Based on 10000 random block of size 11, consisting of the main treatment effect and ten randomly selected 

and independently tested interaction terms. 

FIGURE 1 

Empirical Distribution of Significant Coefficients at 0.05α =  

 

Given that we expect at least one significant effect in 40.2% of all cases in a completely random 

setting (Table 3), the likelihood that a single significant interaction term within our PROGRESA 

thought experiment constitutes a false discovery is about 65% (0.402/0.621).  

 

 

 

IV. STATISTICAL CORRECTIONS FOR MULTIPLE TESTING 

 

0 interactions 

significant
38%

1 interaction 

significant
41%

2 interactions 

significant
17%

3 or more interactions 

significant
4%
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Statisticians have been long aware of the problem of multiple hypothesis testing. The probability 

of the union of two events 1A  and 2A  is equal to the sum of the two probabilities 1( )P A  and 

2( )P A  minus the probability of the intersect, i.e. 

 

  

(3) 1 2 1 2 1 2( ) ( ) ( ) ( )P A A P A P A P A A∪ = + − ∩  

 

This means that the sum of  1( )P A  and 2( )P A  constitutes an upper bound of 1 2( ).P A A∪  If  1A  

and 2A describe very similar events, this upper bound may be distant from the true probability; if 

1A  and 2A are nearly independent ( )1 2( ) 0P A A∩ ≈ , this upper bound will be very close to the 

true probability. In the case of multiple events, equation (1) becomes a bit more complex, but the 

intuition remains exactly the same as in the two events case.  

 

Based on this basic notion, Boole's inequality states that for a finite set of events 1,..., m
A A  the 

probability of one event happening can never be greater than the sum of the probabilities of each 

individual event, i.e. 

  

(4) 
11

( ).
m m

i i

ii

P A P A
==

 
≤ 

 
∑∪  

 

Building on this inequality, the Italian mathematician Carlo Emilio Bonferroni proposed a 

solution to the multiple testing problem. Assume we want to test m (dependent or independent) 

hypotheses at level α . Boole's inequality
5
 implies that at least one of the hypotheses comes out 

significant with probability less or equal to mα . However, in order to keep the chance of false 

discoveries (Type I errors) low, we would like this upper bound to be α  and not mα . Bonferroni 

showed that this can be achieved by testing each single hypothesis at the level α ' = α / m. This is 

called the Bonferroni correction, designed to control the so-called familywise error rate (FWER). 

    

                                                           
5
 Boole's inequality is sometimes also referred to as Bonferroni's inequality. 
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Duflo et al. (2008) argue that Bonferroni type corrections may not be very useful in the context 

of economic field experiments, because the control of Type I errors might come at the cost of 

high Type II errors (less power). At standard 95% confidence intervals, testing for 10 effects 

simultaneously would require p-values of 0.005 for each individual variable.  Recent statistical 

research has produced a number of alternative methods to correct for multiple hypothesis testing, 

which are much more powerful than the simple Bonferroni method.  We focus on frequentist 

methods here but recent work by Gelman, Hill and Yajima (2010) proposes Bayesian multilevel 

models which can address the problem of multiple comparisions and increase efficiency.  

     

Among recent developments in frequentist statistical literature is new multiple testing approach 

introduced in a seminal paper by Benjamini and Hochberg (Benjamini and Hochberg 1995).  

Rather than focusing on the FWER, the authors define the false discovery rate (FDR) as the 

expectation of the false discovery proportion (FDP), i.e, the proportion of the rejected null 

hypothesis which are erroneously rejected. If all null hypotheses are true, the FDR is equivalent 

to the FWER.  Further, if not all null hypotheses are true, it can be shown that any procedure that 

controls the FWER also controls the FDR. If a procedure controls the FDR only, a gain in power 

may be expected. The potential for increase is larger when more of the hypotheses are non-true. 

  

Consider testing a set of hypotheses 1 2, ,...,
m

H H H based on the corresponding p-values

1 2, ,..., .
m

p p p . Let (1) (2) ( )... mp p p≤ ≤ ≤ be the ordered p-values, and denote by ( )iH  the null 

hypothesis corresponding to ( )ip . Let k  be the largest i for which 

 

  

(5) ( )i

i
p

m
α≤  

 

Then reject all ( )iH with 1, 2,...., .i k=  Benjamini and Hochberg (1995) show that this procedure 

controls the FDR at ;α  independence of the test statistics is not needed for the proof.  
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It is easiest to illustrate the differences between the FWER and the FDR approaches with an 

example.  Consider an experiment with one treatment, but 10 different dependent variables. The 

ordered p-values on each of the 10 estimated coefficients look as follows: 

 

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

0.001, 0.004, 0.006, 0.008, 0.010

0.040, 0.050, 0.060, 0.100, 0.400

p p p p p

p p p p p

= = = = =

= = = = =
 

 

Without any adjustment for multiple testing we reject seven of the ten hypotheses at a 5 percent 

level of significance. The Bonferroni-adjustment requires a p-value of  
0.05

' 0.005
10

α = = , which 

means that only two out of the ten hypotheses get rejected. With the Benjamini and Hochberg 

method we check the condition 

  

(6) ( ) .
10

i

i
p α≤  

 

sequentially starting with i = 10. The first p-value to satisfy the condition is 
(5)p with 0.01 < 

0.025; it is straightforward to see that the condition is also satisfied for any 5,i <  so that the 

FDR adjustment leads to a rejection of 5 out of the 10 tested hypotheses.  

 

Genovese and Wasserman (2006) show that the Benjamini and Hochberg method is optimal in 

the sense that it minimizes the false non-discovery rate (FNR) subject to the constraint that the 

FDR is controlled at level ,α  where the FNR is defined as the expectation of the proportion of 

non-rejections that are incorrect. In other words, the Benjamini and Hochberg method keeps the 

number of type II errors as small as possible, i.e. the chance of not rejecting a hypothesis when it 

is false. 

 

V. CORRECTING FOR MULTIPLE HYPOTHESES TESTS IN PRACTICE 

 

There are two important aspects to consider when it comes to the applicability of these correction 

procedures: 1) the technical knowledge required for implementation; 2) the statistical and 
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empirical consequences in terms of type I and type II errors. The first aspect is fortunately 

straightforward. Thanks to the multproc package available in Stata
©

 (Newson 2003), both the 

FDR and FWER methods are easily implemented in practice. The multproc package takes p-

values from a set of variables (from single or multiple regressions) as inputs, and calculates 

corrected critical p-values for a range of correction procedures. The FWER correction is 

intuitive, as critical p-values are simply divided by the number of hypotheses tested (m). In the 

case of single control variable and one interaction term, this implies that the critical p-value for 

significance at the 95% level shifts from 0.05 to 0.05/2 = 0.025. It is easy to see that this 

adjustment keeps the likelihood of a false discovery at the desired low level independent of the 

number of hypotheses tested.  

 

The FDR adjustment is slightly more complex since it is taking true discoveries into account, 

and, as a result, adjusts the p-values to a lesser extent than the FWER method. To see how well 

these adjustments work, we show the implications of the adjustment with truly independent 

variables (theoretical binomial) in a first step, and then revisit the PROGRESA results presented 

in Section 3.  

 

Given that the FDR deviates from the FWER correction only if at least one hypothesis is false, it 

is easy to see that the two corrections have virtually the same effect if we assume 10 independent 

interactions without true effect. With 0.05α =  and 10m =  the adjusted p-value under both 

correction models can be approximated by
6
 

  

(7) 
0.05

0.005
10

adj
p

m

α
= = =  

With the adjusted probability of 0.005, we can get the joint distribution within blocks of 10 by 

plugging the adjusted p-value into the corresponding binomial distribution. As the results 

displayed in Table 4 show, the chance of false discoveries is indeed reduced to just below5%. 

  

                                                           
6
 Technically, the FDR calculates separate p-values for each hypothesis. The adjusted FWER p-value corresponds to 

the p-value for the variable with the lowest p-value. The p-value of the second variable would be is 0.01, the third 

0.015 and so on. In practice the first one will already rule out 95% such that the result is very similar to FWER, but 

it is not the same.  
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TABLE 4 

THEORETICAL (BINOMIAL) DISTRIBUTION OF FALSE DISCOVERIES WITH 10 RANDOM INTERACTION 

TERMS AND ALPHA=0.005 

Event Probability 

No hypothesis significant 0.951 

One hypothesis significant 0.048 

Two or more hypothesis significant 0.010 

 

To provide a better sense of how powerful these corrections are in practice, we show the 

PROGRESA results displayed in Figure 1 with corrected p-values in Figure 2 below. The 

assumption underlying the correction is that within each experiment we test 11 hypotheses, the 

main treatment variable plus 10 randomly selected interaction terms. As Figure 2 shows, neither 

correction affects the significance of the main treatment effect, which is significant in all cases 

with both corrections. Large differences emerge, however, with respect to the interaction terms. 

While we see at least one significant result in 62% of the specifications if no correction is 

applied, the likelihood of finding a statistically significant results drops by 60% (FDR) and 70% 

(FWER), respectively, after the correction is applied. This, however, does not mean that 

researchers applying either correction will never find significant results – as Figure 2 clearly 

illustrates, the chance of finding one or more significant results in a Table showing 10 interaction 

terms in the PROGRESA sample is 18% with the Bonferroni FWER correction, and 24% with 

the Benjamini-Hochberg FDR correction. 
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FIGURE 2 

Empirical Distribution of Significant Results with and without Corrections 

 

VI. IMPLICATIONS FOR STUDY DESIGN AND POWER CALCULATIONS 

 

Given that interaction terms may often be of major importance of researchers designing an 

experiment, one of the key questions is how much of an adjustment is needed to sample size ex-

ante if the researcher plans to test for interaction effects ex-post. To understand what the two 

corrections imply in terms of power, we show a set of numerical simulations in this section. As a 

first step, we assume a sample size of 2000, with a corresponding (unadjusted) power of 0.5 and 

investigate how much power is lost in expected terms once we adjust for multiple hypotheses 

testing. As Figure 3 illustrates, the power drops in a non-linear fashion from 0.35 to about 0.2 for 

the FDR approach; as expected the drop is larger for the FWER approach, where the power 

drops to 0.1 if 10 hypotheses are tested simultaneously.  
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FIGURE 3 

Power with Corrections 

 

While these losses in terms of power may dissuade researchers from applying these corrections 

in practice, the necessary sample adjustment may not be as large as one may think (or fear) as 

long as the number of interactions the researcher is interested in is reasonably small.  

 

Figures 4 illustrate this point for one and two control variables and their interaction terms, 

respectively. As pointed out before, standard power calculations do not apply here as two 

separate treatment groups lower effective group sizes, and increase estimated standard errors. As 

Figure 6 shows, the power of the study with sample size 5000 and a treatment effect of 0.05 is 

0.9 if no interaction term is included. With the interaction term, the power drops to about 0.7. 

The drop in power due to the multiple testing corrections is comparable in magnitude. With a 

sample of 5000, the power with one interaction term drops to about 0.5, while the power with 

two interaction terms is about 0.45. 
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FIGURE 4 

Power with one and two Interaction Terms 

 

 To see the implications for study design, we show necessary samples with and without 

corrections for multiple testing in Figure 5 below. As the figure shows, the absolute differences 

in sample size are rather small for large effect sizes; in relative terms, doing the FWER 

adjustment implies an average increase in necessary sample size (assumed power is 0.9) of about 

28 percent with one interaction, 55% with two interactions, and about 67% with three 

interactions.
7
 These adjustments are not trivial and may appear overly conservative. As discussed 

earlier, the FWER adjustment reduces the risk of false discoveries under the most conservative 

assumption of independence across events. Smaller sample size adjustments could in theory be 

generated by using the FDR approach and by relaxing the assumption regarding event 

independence; however, this would require imposing a large set of additional distributional 

assumptions researchers will struggle to make during early stages of field experiments. From a 

pragmatic perspective, it seems best to base initial sample size calculations on FWER adjusted 

standard errors. The FWER adjustment will keep the risk of false discoveries at the desired low 

levels and guarantee sufficient power for either FWER or FDR standard error adjustments ex-

post. 

 

                                                           
7
 We assume that each interaction term is tested separately, so that each regression yields 3 coefficients 

(covariate, treatment and covariate*treatment) and 3 p-values that need to be adjusted. 
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FIGURE 5 

Absolute Sample Size with and without FWER Correction 

 

 

VII. DISCUSSION AND CONCLUSIONS 

 

Even though the inclusion of multiple interaction terms appears very common in current 

empirical work based on experimental data, multiple testing corrections are generally not applied 

in the recemt economics literature. In this paper we demonstrate that standard statistical 

inference is not valid when heterogeneous treatment effects are tested ex post, and that ignoring 

this issue is likely to generate a large number of false discoveries. Without any true effect, the 

likelihood of finding at least one result significant at the 5% level is 40% with 10 interaction 

effects tested (by one or multiple independent researchers). In the PROGRESA example, we find 

that about two thirds of the results significant at the 5% level can be assumed to reflect false 

discoveries. This risk appears high and, more importantly, unnecessary given the readily 

available correction models developed in the statistics literature. 

  

0

200

400

600

800

1000

1200

1400

1600

1800

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
a

m
p

le
 p

e
r 

tr
e

a
tm

e
n

t 
a

rm

Expected effect size

No correction

FWER 1 Interaction

FWER 3 Interactions

FWER 5 Interactions



21 

 

Three main concerns have been raised regarding the application of correction procedures. The 

first concern regards the actual reporting of statistical tests conducted. Even if proper 

adjustments are applied to the final set of interaction terms tested, the underlying variable 

selection is unobservable ex-post, and may itself be the result of pre-testing. One possible 

approach to address this issue might be a central registration system similar to the ones used in 

medical trials. In fact, Duflo et al (2008) suggest that granting agencies create such a database of 

projects and their ex-ante designs.
8
   

 

The second concern relates to the definition of what counts as a distinct hypothesis. Given that 

many variables may be used as proxies for a specific factor of interest such as income or human 

capital, it may be tempting to argue that all interacted variables are related, and thus reflect one 

single hypothesis. However, given that the correlation between any two proxies of interest is 

small in most cases empirically
9
, treating multiple measures of a specific factor of interest as 

single hypothesis appears not advisable from a statistical perspective.  

 

Finally and maybe most importantly, there is the concern that applying more stringent standard 

errors increases the chance of type-II errors, i.e. the chance of not rejecting a hypothesis when it 

is false. While adjusting p-values clearly comes with some loss of power, we have shown in this 

paper that the cost in terms of additional sample size required for researchers planning to test for 

heterogeneous treatment effects ex-post appears well worth the benefit in terms of reduced false 

discovery risk.  

 

Overall, a wider application of multiple testing procedures in the economics literature appears 

highly desirable. Testing for heterogeneous treatment effects is of obvious interest to researchers, 

and neither can, nor should, be avoided in practice. The resulting risk of false discoveries is high, 

but can be reduced to a minimum if the appropriate correction procedures are applied. 

 

 

                                                           
8
 Some researchers have begun to publish their analysis prior to conducting experiments. Another potential 

alternative is the use of interdisciplinary system where researchers in any field can currently post their designs prior 

to conducting experiments, such as http://clinicaltrials.gov/. 
9
 In the PROGRESA data, the highest correlation between any two indicator variables is 0.15. 
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Appendix Table 1: Index of Strict Natural Experiments 

 

1 

A Field Experiment in Charitable Contribution: The Impact of Social Information on the Voluntary Provision of Public 

Goods 

2 Credit Elasticities in Less-Developed Economies: Implications for Microfinance 

3 Do Workers Work More if Wages Are High? Evidence from a Randomized Field Experiment 

4 Does Job Corps Work? Impact Findings from the National Job Corps Study 

5 Does Price Matter in Charitable Giving? Evidence from a Large-Scale Natural Field Experiment 

6 Experimental Analysis of Neighborhood Effects 

7 Gift-Exchange in the Field 

8 How High are Rates of Return to Fertilizer? Evidence from Field Experiments in Kenya 

9 Incentives for Managers and Inequality Among Workers: Evidence From a Firm-Level Experiment 

10 Incentives to Exercise 

11 Incentives to Learn 

12 Information, School Choice, and Academic Achievement: Evidence From Two Experiments 

13 Insurance, credit, and technology adoption: Field experimental evidence from Malawi 

14 Intra-household allocation of free and purchased mosquito nets 

15 Monitoring Corruption: Evidence from a Field Experiment in Indonesia 

16 Neighborhood Effects on Crime for Female and Male Youth: Evidence From a Randomized Housing Voucher Experiment 

17 Observational Learning: Evidence from a Randomized Natural Field Experiment 

18 Obtaining a Driver’s License in India: an Experimental Approach to Studying Corruption 

19 Power to the People: Evidence From a Randomized Field Experiment on Community-Based Monitoring in Uganda 

20 Powerful Women: Does Exposure Reduce Bias 

21 Putting Behavioral Economics to Work: Testing for Gift Exchange in Labor Markets Using Field Experiments 

22 Remedying Education: Evidence From Two Randomized Experiments in India 

23 Requiring a Math Skills Unit: Results of a Randomized Experiment 

24 Resource and Peer Impacts on Girls’ Academic Achievement: Evidence from a Randomized Experiment 

25 Returns to Capital in Microenterprises: Evidence From a Field Experiment 

26 Salience and Taxation: Theory and Evidence 

27 Saving Incentives for Low- and Middle-Income Families: Evidence From a Field Experiment with H & R Block 

28 Social Connections and Incentives in the Workplace: Evidence from Personnel Data 

29 The Demand for, and Impact of, Learning HIV Status 

30 The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial 

31 The importance of being informed: Experimental evidence on demand for environmental quality 

32 Toward an Understanding of the Economics of Charity: Evidence From a Field Experiment 

33 Tying Odysseus to the Mast: Evidence From a Commitment Savings Product in the Philippines 

34 What Matters (and What Does Not) in Households’ Decision-Making Regarding Investments in Malaria Prevention? 
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Appendix Table 2: Binary Variables Used in PROGRESA Regressions 

 

 

1 bathroom 38 head_nospanish 75 lost_limb 112 rooftype4 

2 bathroom_water 39 head_o60 76 mental 113 rooftype5 

3 bedrooms1 40 head_perm_unable 77 migrant 114 rooftype6 

4 bedrooms2 41 head_preparatoria 78 needs_help_to_move 115 rooftype7 

5 bedrooms3 42 head_primary 79 no_waterelectric 116 rooftype8 

6 bedrooms4 43 head_primary_income 80 noincome 117 rooftype9 

7 bedrooms5 44 head_profesional 81 not_childofhead 118 second_income 

8 bedrooms6plus 45 head_retired 82 one_child 119 shared_building 

9 blender 46 head_secondary 83 owns_agri_land 120 spouse_away 

10 blind 47 head_single 84 owns_animals 121 stove 

11 budget_control_head 48 head_single_female 85 owns_cattle 122 three_children 

12 budget_control_other 49 head_socialsecurity 86 owns_chicken 123 treatment_dif 

13 budget_control_shared 50 head_temp_unable 87 owns_donkey 124 treatment_hospital 

14 budget_control_spouse 51 head_u20 88 owns_goatsorsheeps 125 treatment_imss 

15 car 52 head_widowed 89 owns_horse 126 treatment_issste 

16 cd 53 head_working 90 owns_land 127 treatment_othergov 

17 deaf 54 hhsize10plus 91 owns_multiple_pieces 128 treatment_ssa 

18 decision_head 55 hhsize2 92 owns_ox 129 truck 

19 dumb 56 hhsize3 93 owns_pigs 130 tv 

20 electric_lights 57 hhsize4 94 owns_rabbits 131 two_children 

21 fan 58 hhsize5 95 piped_inside 132 video 

22 father_athome 59 hhsize6 96 piped_water 133 walltype1 

23 female 60 hhsize7 97 radio 134 walltype10 

24 five_or_more_children 61 hhsize8 98 receives_apoyoINI 135 walltype11 

25 floortype1 62 hhsize9 99 receives_becacapicaticaion 136 walltype12 

26 floortype2 63 house_paid 100 receives_desayuno_escolar 137 walltype13 

27 floortype3 64 house_paying 101 receives_despensa_DIF 138 walltype14 

28 floortype4 65 house_provided 102 receives_empleotemporal 139 walltype15 

29 four_children 66 house_rented 103 receives_leche 140 walltype2 

30 fridge 67 inshool_97 104 receives_ninosdesolid 141 walltype3 

31 head_2060 68 kids_medical_head 105 receives_tortilla 142 walltype4 

32 head_basica 69 kids_medical_other 106 rooftype1 143 walltype5 

33 head_dialect 70 kids_medical_shared 107 rooftype10 144 walltype6 

34 head_female 71 kids_medical_spouse 108 rooftype11 145 walltype7 

35 head_literate 72 laundry 109 rooftype12 146 walltype8 

36 head_married 73 light_meter 110 rooftype2 147 walltype9 

37 head_noschool 74 literate 111 rooftype3 148 water_heater 
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