
CHAPTER 32 

Making Effects Manifest in 
Randomized Experiments 

Jake Bowers 

Experimentalists want precise estimates of 
treatment effects and nearly always care about 
how treatment effects may differ across sub­
groups. After data collection, concern may 
turn to random imbalance between treatment 
groups on substantively important variables. 
Pursuit of these three goals - enhanced preci­
sion, understanding treatment effect hetero­
geneity, and imbalance adjustment - requires 
background information about experimental 
units. For example, one may group similar 
observations on the basis of such variables 
and then assign treatment within those 
blocks. Use of covariates after data have 
been collected raises extra concerns and 
requires special justification. For example, 
standard regression tables only approximate 
the statistical inference that experimentalists 
desire. The standard linear model may also 
mislead via extrapolation. After provid­
ing some general background about how 
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covariates may, in principle, enable pursuit 
of precision and statistical adjustment, this 
chapter presents two alternative approaches 
to covariance adjustment: one using modern 
matching techniques and another using the 
linear model- both use randomization as the 
basis for statistical inference. 

I. \Vhat Is a Manifest Effect? 

A manifest effect is one we can distinguish 
from zero. Of course, we cannot talk for­
mally about the effects of an experimental 
treatment as manifest without referring to 
probability: a scientist asks, "Could this result 
have occurred merely through chance?" or 
"If the true effect were zero, what is the 
chance that we'd observe an effect as large 
as this?" More formally, for a frequentist, 
saying that a treatment effect is manifest 
means that the statistic we observe casts 
a great deal of doubt on a hypothesis of 
no effects. We are most likely to say that 
some observed effect casts doubt on the 
null hypothesis of no effect when we have 
a large sample and/or when noise in the 
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outcome that might otherwise drown out the 
signal in our study has been well controlled. 
Fisher (1935) reminds us that although ran­
domization alone is sufficient for a valid test 
of the null hypothesis of no effect, specific 
features of a given design allow equally valid 
tests to differ in their ability to make a treat­
ment effect manifest: 

With respea to the refinements of technique 
[uses of co variates in the planning of an exper­
iment}, we have seen above that these con­
tribute nothing to the validity of the experi­
ment, and of the test of significance by which 
we detnmine its result. They may, however, 
be important, and even essential, in permit­
ting the phenomenon under test to manifest 
itself. (24) 

Of course, one would prefer a narrow con­
fidence interval to a wide confidence inter­
val, even if both e:xcluded the hypothesis of 
no effects. As a general rule, more infor­
mation yields more precision of estimation. 
One may increase information in a design by 
gathering more observations and/or gather­
ing more data about each observation. This 
paper considers covariates as a refinement of 
technique to make treatment effects manifest 
in randomized studies. I focus first on sim­
ple uses of covariates in design and then offer 
some ideas about their use in post-treatment 
adjustment. 

What Are Covariates? How Should We Use 
Them in Experiments? 

A covariate is a piece of background informa­
tion about an experimental unit - a variable 
unchanged and unchangeable by the exper­
imental manipulation. Such variables might 
record the groups across which treatment 
effects ought to differ according to the theory 
motivating and addressed by the experimen­
tal design (e.g., men and women ought to 
react differently to the treatment) or might 
provide information about the outcomes of 
the experiment (e.g., men and women might 
be expected to have somewhat different out­
comes even if reactions to treatment are 
expected to be the same across both groups). 
Covariates may be used profitably in experi-

ments either before treatment is assigned (by 
creating subgroups of units within which 
treatment will be randomized during the 
recruitment and sample design of a study) 
and/or after treatment has been assigned and 
administered and outcomes measured (by 
creating subgroups within which outcomes 
ought to be homogeneous or adjusting for 
covariates using linear models). 

Common Uses (and Potential Abuses) 
of Covariates in the Workflow 
of Randomized Experimentation 

Every textbook on the design of experiments 
is, in essence, a book about the use of covari­
ates in the design and analysis of experiments. 
This chapter does not substitute for such 
sources. For the newcomer to experiments, 
I summarize in broad strokes, and with min­
imal citations, the uses to which covariates 
may be put in the design and analysis of ran­
domized experiments. After tl1is summary, I 
offer a perspective on the use of covariates 
in randomized experimentation that, in fun­
damental ways, is the same as that found in 
Fisher (1925,1935), Cochran and Cox (1957), 
Cox (1958), and Cox and Reid (2000). I dif­
fer from these previous scholars in hewing 
more closely and explicitly to I) the now 
well-known potential outcomes framework 
for causal inference (Rubin 1974, 1990; Nay­
man 1990; Brady 2008; Sekhon 2008) and 
2) randomization as the basis for statistical 
inference. 

COVARIATES ALLOW PRECISION 

ENHANCEMENT 

Blocking on background variables before 
treatment assignment allows the experi­
menter to create sub experiments within 
which the units are particularly similar in 
their outcomes, and adjustment using covari­
ates after data have been collected may 
also reduce nontreatment-related variation 
in outcomes. In both cases, covariates can 
reduce noise that might otherwise obscure the 
effects of the treatment. 

Of course, such precision enhancements 
arrive with some costs: implementing a block­
ing plan may be difficult if background 
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information on experimental units is not 
available before recruitment/arrival at the 
lab (but see Nickerson 2005); care must be 
taken to reflect the blocking in the estima­
tion of treatment effects to avoid bias and 
to take advantage of the precision enhance­
ments offered by the design; and, in principle, 
analysts can mislead themselves by perform­
ing many differently adjusted hypothesis tests 
until they reject the null of no effects, even 
when the treatment has no effect. 

COVARIATES ENABLE SUBGROUP ANALYSES 

When theory implies differences in treatment 
effects across subgroups, subgroup member­
ship must be recorded, and, if possible, the 
experiment ought to be designed to enhance 
the ability of the analyst to distinguish group 
differences in treatment effects. Covariates 
on subgroups may also be quite useful for post 
hoc exploratory analyses designed not to cast 
doubt on common knowledge, but to suggest 
further avenues for theory. 

COVARIATES ALLOW ADJUSTMENTS 

FOR RANDOM IMBALANCE 

All experiments may display random imbal­
ance. Such baseline differences can arise even 
if the randomization itself is not suspect: 
recall that one of twenty unbiased hypothesis 
tests will reject the null of no difference at the 
predetermined error rate of ft = .05 merely 
due to chance. An omnibus balance assess­
ment such as that proposed by Hansen and 
Bowers (2008) is immune from this problem, 
but any unbiased one-by-one balance assess­
ment will show imbalance in 100ft percent of 
the covariates tested. Thus, I call this prob­
lem "random imbalance" to emphasize that 
the imbalance could easily be due to chance 
and need not cast doubt on the randomiza­
tion or administration of a study (although 
discovery of extensive imbalance might sug­
gest that scrutiny of the randomization and 
administration is warranted). 

Random imbalance in a well-randomized 
study on substantively important covariates 
may still confuse the reader. In the presence 
of random imbalance, comparisons of treated 
to controls will contain both the effect of the 
treatment and the differences due to the ran-

dam imbalance. One may attempt to remove 
the effects of such covariates from the treat­
ment effect by some form of adjustment. For 
example, one may use the linear regression 
model as a way to adjust for covariates, or 
one may simply group together observations 
on the basis of the imbalanced covariates. 
Adjustment, however, raises concerns that 
estimates of treatment effects may come to 
depend more on the details of the adjustment 
method rather than on the randomization 
and design of the study. Thus, the quandary: 
either risk known confusions of comparisons 
or bear the burden of defending and assess­
ing an adjustment method. An obvious strat­
egy to counter concerns about cherry-picking 
results or modeling artifacts is to present both 
adjusted and unadjusted results and to specify 
adjustment strategies before randomization 
occurs. 

Randomization Is the Primary Basis 
for Statistical Inference in Experiments 

A discussion of manifest effects is also a 
discussion of statistical inference: statisti­
cal tests quantify doubt against hypotheses, 
and a manifest effect is evidence that casts 
great doubt on the null of no effects. On 
what basis can we justify statistical tests for 
experiments? 

In national surveys, we draw random sam;. 
pIes. Statistical theory tells us that the mean 
in the sample is an unbiased estimator of 
the mean in the population as long as we 
correctly account for the process by which 
we drew the sample in our estimation. That 
is, in a national survey, our target of infer­
ence is often (but not always) the population 
from which the sample was drawn, and we 
are Justified in so inferring by the sampling 
design. 

In other studies, we may not know how 
a sample was drawn (either we have no 
well-defined population or no knowledge of 
the sampling process or both). But we may 
know how our observed outcome was gen­
erated: say we know that at the microlevel 
our outcome was created from discrete events 
occurring independently of each other in 
time. In that case, we would be justified 
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in claiming that our population was cre­
ated via a Poisson process: in essence, we 
have a population-generating machine, data­
generating process, or model of outcomes as 
the target of our inference. 

Now, what about randomized experi­
ments? Although we might want to infer to a 
model, or even to a population, the strength 
of experiments is inference to a counterfac­
tual. The primary targets of inference in a 
randomized experiment are the experimen­
tal treatment groups: we infer from one to 
another. Randomization makes this inference 
meaningful. But, randomization can also jus­
tify the statistical inference as well. The mean 
in the treatment group is a good estimator for 
what we would expect to observe if all of the 
experimental units were treated. The treat­
ment group in a randomized study is a ran­
dom sample from the finite "population" of 
the experimental pool. I 

All standard textbooks note this fact, but 
they also point out that estimating causal 
effects using randomization-based theory can 
be mathematically inconvenient or compu­
tationally intensive and that, thus, using 
the large-sample sampling theory (and/or 
normal distribution models) turns out to 
provide very good approximations to the 
randomization-based results most of the time. 
Since the 1930S, the computational appa­
ratus of randomization-based inference has 
expanded, as has its theoretical basis and 
applied reach. In this chapter, the statistical 
inference I present is randomization-based, 
even if most of it also uses large-sample the­
ory. For example, it takes no more time to 
execute a randomization-based test of the null 
hypothesis of no effect using mean differ-

I See Rosenbaum (20Olb, ch. 2) and Bowers and 
Panagopoulos (2009) for accessible introductions to 
randomization inference; a mode of inference devel­
oped in different yet compatible ways by Fisher 
(1935, ch. 2) (as a method of testing) and Neyman 
(1990) (as a method of estimating mean differences). 
In this paper, I follow the Fisher-style approach 
in which causal effects are inferred from testing 
hypotheses rather than estimated as points. Both 
methods (producing a plausible interval for causal 
effects using a point ± a range or testing a sequence 
of hypotheses) often produce identical confidence 
intervals. 

ences than it does using the linear regression 
model-based approximation.2 

Recently, Freedman (2008a, 2008b, 
2008e) reminded us that the target of in­
ference in randomized experiments was the 
counterfactual, and he noted that linear 
regression and logistic regression were not 
theoretically justified on this basis. Green 
(2009) and Schochet (2009) remind us that 
linear regression can often be an excellent 
approximation to the randomization-based 
difference of means. The need for this ex­
change is obvious, even if it is echoed in the 
early textbooks. Those early authors moved 
quickly to the technicalities of the approx­
imations rather than dwelling on the then 
uncomputable but theoretically justifiable 
procedures. As experimentation explodes as 
a methodology in political science, we are 
seeing many more small experiments, designs 
where randomization is merely a (possibly 
weak) instrument, and theories implying very 
heterogeneous treatment effects. I expect we 
will find more of these along with many more 
large studies with fairly normal-looking out­
comes where treatment plausibly just shifts 
the normal eurve of the treated away from 
the normal curve of the controls. Rather than 
hope that the linear model approximation 
works well, this chapter presents analyses 
that do not require that approximation and 
thereby offers others the ability to check the 
approximation. 

2. Strategies for Enhancing Precision 
before Assignment 

[W]e consider some ways of reducing the effect 
of uncontrolled variations on the error of the 
treatment comparisons. The general idea is 
the common sense one of grouping the units 
into sets, all the units in a set being as alike 

2 This chapter is wtitten in the mixture of R and 
LATEX known as Sweave (Leisch 2002, 2005) and, 
as such, the code required to produce the results, 
tables, and figures (as well as additional analyses not 
reported) are available for learning and exploration at 
http://jakebowers.org. Thus, I spend relatively little 
time discussing the details of the different methods, 
assuming that those interested in learning more will 
download the source code of the chapter and adapt it 
for their own purposes. 

--
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as possible, and then assigning the treatments 
so that each occurs once in each set. All com­
parisons are then made within sets of similar 
units. The success of the method in reducing 
error depends on using general knowledge of 
the experimental material to make an appro­
priate grouping of the units into sets. (Cox 
1958,23) 

We have long known that covariates enhance 
the precision of estimation to the extent that 
they predict outcomes. This section aims to 
make this intuition more concrete in the con­
text of a randomized experiment. 

An Example by Simulation 

Imagine that we desire to calculate a differ­
ence of means. In this instance, we are using a 
fixed covariate x, and the purpose of this dif­
ference in means is to execute a placebo test or 
a balance test, not to assess the causal effects 
of a treatment. Imagine two scenarios, one in 
which a binary treatment Zib :::::: I is assigned 
to mb = I subject within each of B pairs 
b = I, ... , B; i = I, ... , nb, B::s n; n = 
L:=1 nb (for pairs n = 2B and, thus, nb = 
2), and another in which a binary treatment 
Zi = I is assigned to m = n - m = (nI2), 
subjects i = I, ... , n without any blocking. 
Consider the test statistics 

which reduces to the difference in means of 
x between treated and control units within 
pairs summed across pairs and 

n 

dno pairs = L Zi X;/ m 
i=I 

n 

- L (I - Zi)xi/(n - m), (2) 
i=I 

which sums across all units within control and 
treatment conditions. These two quantities 
are the same, even if one is written as an aver­
age over B pairs, because pairs are blocks of 
equal size and, therefore, each block-specific 
quantity ought to contribute equally to the 
sum. 

The theory of simple random sampling 
without replacement suggests that the vari­
ances of these statistics differ. First, 

n ~ (Xi - X)2 
Var(dnopairs) = ( ) ~ mn-m. n-I 

t=I 

Second, 

B 2 

= (;2) LL(Xib -XbY· (4) 
b=I i=1 . 

If pairs were created on the basis of similarity 
on x, then Var(dnopairs) > Var(dpairs) because 
2:=~=1 (Xi - X)' > 2:=:=12:=:=1 (Xib - Xb)2. Any 
given Xi will be farther from the overall 
mean (x) than it would be from the mean 
of its pair (Xb). Note also that the con­
stants multiplying the sums are (4/n(n-I» 
in the unpaired case and 8/n2 (because B = 
(nI2» in the paired case. As long as n > 
2, (4/(n2 - n» < (8/n2), and this differ­
ence diminishes as n increases. Thus, ben­
efits of pairing can diminish as the size of 
the experiment increases as long as within­
pair homogeneity does not depend on sample 
size. 

To dramatize the benefits possible from 
blocking, I include a simple simulation study 
based roughly on real data from a field 
experiment of newspaper advertisements and 
turnout in U.S. cities (Panagopoulos 2006). 
The cities in this study differed in baseline 
turnout (with baseline turnout ranging from 
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'Figure 32.1. Efficiency of Paired and Unpaired Designs in 
Simulated Turnout Data 

roughly ten percent to roughly fifty per­
cent). Panagopoulos paired the cities before 
randomly assigning treatment, with baseline 
turnout differences within pair ranging from 
one to seven percentage points in absolute 
value. The simulation presented here takes 
his original 8-city dataset and makes two 
fake versions, one with 32 cities and another 
with 160 cities. The expanded datasets were 
created by adding small amounts of uni­
form random noise to copies of the original 
dataset. These new versions of the original 
dataset maintain the same general relation­
ships between treatment and outcomes and 
covariates and pairs as the original, but allow 
us to examine the effects of increasing sam­
ple size. In this simulation, the covariate val­
ues are created so that the average difference 
of means within pair is zero. For each of the 
1,000 iterations of the simulation and for each 
dataset (n = 8, 32, 160), the procedure was as 
follows: 

Create fake data based on original data 
Each pair receives a random draw from a nor-

mal distribution with mean equal to the base­
line outcome of its control group and standard 
deviation equal to the standard deviation of 
the pair. For the original dataset, the within 
pai1' differences on baseline turnout of I, 4, 
and 7 translate into standard deviations of 
roughly 0.7, 3, and 5, The "true" difference 
is required to be zero within every pair, but 
each pair may have a different baseline level of 
turnout and a different amount of variation -
mirroring the actual field experiment. 

Estimate variance of treatment effects 
under null Apply Equations (3) and (4).3 

Figure 32.1 shows that estimates of 
JVar(dnopairs) were always larger than the 
estimates for JVar(dpairs), although the ratio 
JVar(dnopairs)/ JVar(dpairs) diminished as the 
size of the experiment increased. The stan­
dard deviation across the simulations for the 
paired 8-city example (1.8) is dose to the 

3 The actual computations used the xBalance com­
mand found in the RItools library for R (Bow­
ers, Fredrickson, and Hansen 2009), as described in 
Hansen and Bowers (2008). 
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average standard deviation for the nonpaired 
tests in the 160-city example (2.3). That is, 
these simulations show that a paired exper­
iment of 8. units could be more precise 
than an unpaired experiment of 160 units 
(although, of course, a paired experiment of 
160 units would be yet more precise [the 
average null SD in that case is 0.5]). Notice 
that, in this case, the advantages of the paired 
design diminish as the size of the experiment 
increases but do not disappear. 

Pairing provides the largest opportunity 
for enhancement of precision in the compar­
ison of two treatments - after all, it is hard to 
imagine a set more homogeneous than two 
subjects nearly identical on baseline covari­
ates (Imai, King, and Nall 2009), And, even 
if it is possible for an unpaired design to pro­
duce differences of means with lower variance 
than a paired design, it is improbable given 
common political science measlli-ing instru­
ments. 

What do we do once the experiment has 
run? One can enhance precision using covari­
ates either via post-stratification (grouping 
units with similar values of covariates) or 
covariance adjustment (fitting linear models 
with covariates predicting outcomes). In the 
first case, analyses proceeds as if prestratified: 
estimates of treatment effects are made con­
ditional on the chosen grouping. In the sec­
ond case, linear models "adjust for" covari­
ates - increased precision can result from 
their inclusion in linear models under the 
same logic as that taught in any introduction 
to statistics classes. 

3. Balance Assessment: Graphs 
and Tests 

We expect that the bias reduction operating 
characteristics of random assignment would 
make the baseline outcomes in the control 
group comparable to the baseline outcomes 
in the treatment group. If the distribution of 
a covariate is similar between treated and con­
trol groups, then we say that this covariate is 
"balanced" or that the experiment is balanced 
with respect to that covariate. Yet, it is always 
possible that any given randomization might 

make one or more observed (or unobserved) 
covariates imbalanced merely by chance. If 
the imbalanced covariates seem particularly 
relevant to substantive interpretations of the 
outcome (as would be the case with outcomes 
measured before the treatment was assigned), 
then we would not want such differences to 
confuse treatment-versus-control differences 
of post-treatment outcomes. 

One Graphical Mode of Assessment 

Figure 32.2 provides both some reassurance 
and some worry about balance on the baseline 
outcome in the thirty-two-city data exam­
ple. The distributions of baseline turnout are 
nearly the same (by eye) in groups 2 and 3, 
but differ (again, by eye) in groups I and 4. 
Should these differences cause concern? 

The top row of Table 32.1 provides one 
answer to the question about worries about 
random imbalance on baseline outcome. We 
would not be surprised to see a mean differ­
ence of dblocks = - 1.2 if there were no real dif­
ference given this design (p = .2). Of course, 
questions about balance of a study are not 
answerable by looking at only one variable. 
Table 32.1 thus shows a set of randomization­
based balance tests to assess the null of no 
difference in means between treated and con­
trol groups on covariates one by one and 
also all together using an omnibus balance 
test. We easily reject the null of balance on 
the linear combination of these variables in 
this case (p = .00003), although whether we 
worry about the evident differences on per­
cent. black or median income of the cities 
may depend somewhat on the extent to which 
we fear that such factors matter for our out­
come - or whether these observed imbalances 
suggest more substantively worrisome imbal­
ances in variables that we do not observe. 
Does this mean the experiment is broken? 
Not necessarily.4 

4 It would be strange to see such imbalances in a 
study run with thirty-two observations rather than 
an eight-observation study expanded to thirty-two 
observations artificially as done here. These imbal­
ances, however, dramatize and clarify benefits and 
dangers of post-treatment adjustment as explained 
throughout this chapter. 
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Table 32.1: One-by-One Balance Tests for Covariates Adjusted for Blocking in the 
Blocked Thirty-Two-City Study 

X XCtrl XrTt dblocks jVar(dblocks) Std.dblocks z 

Baseline outcome 27.1 25.8 -1.2 0·9 -0.1 -1.4 
Percent black 17·3 2.6 -14·7 4.2 -1.2 -3·5 
Median HH income 30.6 46,3 15·7 3.2 2.6 4·9 
Number of candidates 13.2 10·3 -2·9 2.0 -0·5 -1.5 

p 

.2 

.0 

.0 

.1 

Notes: Two-sided p values are reported in the p column referring z to a std. normal distribution, approx­
imating the distribution of the mean difference under null of no effects. An omnibus balance test casts 
doubt on the null hypothesis of balance on linear combinations of these covariates at p = .00003. Test 
statistics (dblocks) are generalizations of Equations (1) and (4) developed in Hansen and Bowers (2008) 
and implemented in Bowers et al. (2009). Statistical inference (z and p values) is randomization based 
but uses large-sample normal approximations for convenience. Other difference-of-means tests without 
the large-sample approximation, and other tests such as Kolmogorov-Smirnov and Wilcoxon rank sum 
tests, provide the same qualitative interpretations. For example, the p values on the tests of balance for 
baseline outcome (row r) ranged fromp = .16 andp = .17 for the simulated and asymptotic difference 
of means tests, respectively, to p = .33 and p = .72 for exact and simulated Wilcoxon rank sum and 
Kolmogorov-Smirnov tests. 
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Figure 32.2. Graphical Assessment of Balance on Distributions of 
Baseline Turnout for the Thirty-Two-City Experiment Data 
Notes: Open circles are observed values. Means are long, thick black 
lines. Boxplots in gray. 
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Table 32.2: One-by-One Balance Tests for Covariates in the Blocked Eight-City Study 

X XCtrl Xrrt dblocks JVar(dblocks) Std.dblocks z p 

Baseline outcome 26.0 24.8 -1.2 2.0 -0.1 -0.6 ·5 
Percent black 16.8 2-4 -14·4 11.0 -1.1 -1.3 .2 
Median HH income 29.2 44·5 15-4 8.1 2·5 1.9 .1 
Number of candidates 13.0 10.0 -3.0 5.1 -0·5 -0.6 .6 

Notes: An omnibus balance test casts doubt on the null hypothesis of balance on linear combinations of 
these covariates at p = .41. Test statistics (dblocks) are generalizations of Equations (I) and (4) developed in 
Hansen and Bowers (2008) and implemented in Bowers et al. (2009). Statistical inference (z and p values) 
is randomization based, but uses large-sample normal approximations for convenience. 

Understanding p Values in Balance Tests 

Say we did not observe thirty-two observa­
tions in sets of four but only eight observa­
tions in pairs. What would our balance tests 
report then? Table 32.2 shows the results 
for such tests, analogous to those shown in 
Table 32.1-

Notice that our p values now quantify 
less doubt about the null. Is there something 
wrong with randomization-based tests if, by 
reducing the size of our experiment, we would 
change our judgment about the operation' of 
the randomization procedure? The answer 
here is no.S 

The p values reported from balance tests 
used here summarize the extent to which ran­
dom imbalance is worrisome. With a sam­
ple size of eight, the confidence interval for 
our treatment effect will be large - taking 
the pairing into account, a ninety-five per­
cent interval will be on the order of ±3.5 (as 
roughly calculated on the baseline outcomes 
in Section 2). For example, both Tables 32.1 
and 32.2 show the block-adjusted mean dif­
ference in percent black between treated and 
control groups to be roughly 14.5 percentage 
points. In the thirty-two-city example, this 
difference cast great doubt against the null 

5 Echoing Senn (1994), among others, in the clinical 
trials world, Imai, King, and Stuart (2008) provide 
some arguments against hypothesis tests for balance 
in observational studies. Hansen (2 008) answers these 
criticisms with a formal account of the intuition pro­
vided here, 1) pointing out that randomization-based 
tests do not suffer the problems highlighted by those 
authors, and 2) highlighting the general role that p 
values play in randomization-based inference. 

of balance, whereas in the eight-city example 
this difference casts less doubt. Now, eval­
uating the difference between controls and 
treatment on actual outcome in the eight­
city case gives dpairs = 1.5 and, under the 
null of no effects, gives jVar(dpairs) = 2.6 -
and inverting this test leads to an approxi­
mate eighty-eight percent confidence inter­
val of roughly [-7,7]: the width of the confi­
dence interval itself is about fourteen points 
of turnout. Even if percent black were a per­
fect predictor of turnout (which it is not, with 
a pair adjusted linear relationship of 0.07 in 
the eight-city case), the p value of .2 indicates 
that the relationship with treatment assign­
ment is weak enough, and the confidence 
intervals on the treatment effect itself would 
be wide enough, to make any random imbal~ 
ance from percent black a small concern. That 
is, the p values reported in Table 32.2 tell 
us that random imbalances of the sizes seen 
here will be small relative to the size of the 
confidence interval calculated on the treat­
ment effect. With a lll,rge sample, a small 
random imbalance is proportionately more 
worrisome because it is large relative to the 
standard error of the estimated treatment 
effect. Given the large confidence intervals on 
a treatment effect estimated on eight units, 
the random imbalances shown here are less 
worrisome - and the p values encode this 
worry just as they encode the plausibility of 
the null. 

Thus, even though our eyes suggested 
that we worry about the random imbalance 
on baseline turnout we saw in Figure 32.2, 



Jake Bowers 

that amount of imbalance on baseline out­
come is to be expected in both the thirty-two 
and eight-city cases - it is an amount of bias 
that would have little effect on the treatment 
effect were we to adjust for it. Of course, 
the omnibus test for imbalance on all four 
covariates simultaneously reported in Table 
32. I does cast doubt on the null of balance -
and the tests using the d statistics in Table 
32.I suggest that the problem is with per­
cent black and median household income 
rather than baseline outcomes or number of 
candidates.6 

4. Covariates Allow Adjustment 
for Random Imbalance 

A well-randomized experiment amung to 
explain something about political participa­
tion showing manifest imbalance on educa­
tion poses a quandry. If the analyst decides 
to adjust, then he or she may fall under sus­
picion: even given a true treatment effect of 
zero, one adjustment out of many tried will 
provide a p value casting doubt on the null 
of no effect merely through chance. With­
out adjustment, we know how to interpret p 
values as expressions of doubt about a given 
hypothesis: low p values cast more doubt than 
high p values. Adjustment in and of itself does 
not invalidate this interpretation: a p value 
is still a p value. Concerns center rather on 
I) whether an "adjusted treatment effect" is 
substantively meaningful and how it relates 
to different types of units experiencing the 
treatment in different ways - that is, the con­
cerns center on the meaning of "adjustment" 
in the context of the adjustment method (a 

6 If we had twenty covariates and rejected the null of 
balance with p < .05, we would expect to falsely 
see evidence of imbalance in one of twenty covari­
ates. Thus, Hansen and Bowers (2008) urge the use 
of an omnibus test - a test that assessess balance 
across all linear combinations of the covariates in the 
table. Yet, the variable-by-variable display is useful 
in the same way that graphs such as Figure 32.2 are 
useful in suggesting (not proving) the sources of 
imbalance. 

linear model or a post-stratification); and 2) 
whether a specification search was conducted 
with only the largest adjusted treatment effect 
reported, representing a particularly rare or 
strange configuration of types of units. Such 
worries do not arise in the absence of adjust­
ment. Yet, if the analyst declines to adjust, 
then he or she knows that part of the treat­
ment effect in his or her political participa­
tion study is due to differences in education, 
thereby muddying the interpretation of his or 
her study. 

One may answer such concerns by 
announcing in advance the variables for 
which random imbalance would be particu­
larly worrisome and also provide a proposed 
adjustment and assessment plan a priori. Also, 
if one could separate adjustment from estima­
tion of treatment effects, one may also avoid 
the problem of data snooping. For example, 
Bowers and Panagopoulos (2009) propose 
a power analysis-based method of choosing 
covariance adjustment specifications that can 
be executed independently of trea tmen t effect 
estimation, and it is well known that one 
may poststratify and/or match without ever 
inspecting outcomes. Post-stratification may 
also relieve worries about whether compar­
isons adjusted using linear models are arti­
facts of the functional form (Gelman and Hill 
2007, ch. 9). 

There are two broad categories of sta­
tistical' adjustment for random imbalance: 
adjustment by stratification and adjustment 
using models of outcomes. In both cases, 
adjustment amounts to choice of weights, 
and adjustment may be executed entirely to 
enhance precision even if there is no appre­
ciable evidence of random imbalance. Notice 
that the "unadjusted" estimate may already 
be an appropriately weighted combination of 
block-specific treatment effects - and that 
to fail to weight (or "adjust") for block­
specific probabilities of treatment assignment 
will confound estimates of average treat­
ment effects (if the probabilities of assign­
ment differ across blocks) and decrease preci­
sion (if the variation in the outcomes is much 
more homogeneous within blocks than across 
blocks). 
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Post-Stratification Enables Adjustment but 
Must Respect Blocking and Design 

Say, for example, that within blocks defined 
by town, the treated group on average con­
tained too many men (and that although 
gender was important in the study, the 
researcher either could not or forgot to block 
on it within existing blocks). An obvious 
method of preventing "male" from unduly 
confusing estimates of treatment effects is 
to only compare men to men, within block. 
Analysis then proceeds using the new set 
of blocks (which represent both the pre­
treatment blocks and the new post-treatment 
strata within them) as before. 

One may also use modern algorithmic 
matching techniques to construct strata. 
Keele, McConnaughy, and White (2008) 
argue in favor of matching over linear ~odels 
for covariance adjustment and show SImula­
tions suggesting that such post-stratifica~on 
can increase precision. Notice that matching 
to adjust experiments is different from match­
ing in observational studies: matching here 
must be done without replacement in order to 
respect the assignment process of the experi­
ment itself, and matching must be full. That 
is, although common practice in matc~g 
in observational studies is to exclude certam 
observations as unmatchable or perhaps to 
reuse certain excellent control units, in a ran­
domized experiment every observation must 
be retained and matched only once. This lim­
its the precision enhancing features of match­
ing (at least in theory) because homoge~e­
ity will be bounded first by the blocking 
structure before random assigmnent and then 
again by requiring that all observations be 
matched. 

Figure 32.3 shows confidence intervals 
resulting from a variety of post-stratification 
adjustments made to the thirty-two-city 
turnout data. In this particular experiment, 
the within-set homogeneity increase result­
ing from post-stratification did not outweigh 
the decrease in degrees of freedom occur­
ring from the need to account for strata: 
the shortest confidence interval was for the 
unadjusted data (shown at the bottom of the 
plot). 

Did the post-stratification help with the 
balance problems with the census variables 
evident in Table 32.1? Table 32.3 shows 
the strata-adjusted mean differences and p 
value for balance tests now adjusting for the 
post-stratification in addition to the blocking. 
Balance on baseline turnout and number of 
candidates does improve somewhat with the 
matching, but balance on percent black and 
median household income does not appre­
ciably improve. Notice a benefit of post­
stratification here: the postadjustment bal­
ance test shows us that we have two covariates 
that we could not balance. 

Discussion of the advantages of blocking in 
Section 2 is, in essence, about how to analyze 
blocked (pre- or poststratified) experimental 
data. The rest of the chapter is devoted to 
understanding what it is that we mean by 
"covariance adjusted treatment effects." 

Linear Models Enable Adjustment 
but May Mislead the Unwary 

Even with carefully designed experiments 
there may be a need in the analysis to make 
$.ome adjustment for bias. In some situations 
where randomization has been used, there 
may be some suggestion from that da~a that 
either by accident effective balance of tmpor­
tant features has not been achieved or that 
possibly the implementation of the random:­
ization has been ineffective. (Cox and Retd 
2000,29) 

Cox and Reid's discussion in their sec­
tion 2.3 entitled "Retrospective Adjustment 
for Bias" echoes Cox (1958, 51-52) and 
Fisher (1925). What they call "bias," I think 
might more accurately be called "random 
imbalance. " 

Although Fisher developed the analysis of 
covariance using an asymptotic F test that 
approximated the randomized-based results, 
others have since noted that the standard 
sampling-based infinite population or nor~al 
model theory of linear models does not JUS­

tify their use in randomized experiments. For 
example in discussing regression standard 
errors, Cox and McCullagh (1982) note, "It 
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Figure 32.3. Post-Stratification Adjusted Confidence Intervals for the Difference in Turnout between 
Treated and Control Cities in the Thirty-Twa-City Turnout Experiment 
Notes: Each line represents the interval for the treatment effect after different post-stratification 
adjustments have been applied within the existing four blocks of eight cities. Thin lines show the 
ninety-five percent intervals. Thick lines show the sixty-six percent intervals. The propensity score was 
calculated from a logistic regression of treatment assignment on baseline turnout, number of candidates 
running for office, percent black, and median household income (both from the 2000 Census), and block 
indicators. All post-stratification and interval estimation was done with full, optimal matching using the 
optmatch (Hansen and Fredrickson 2OIO) and RItools (Bowers et al. 2009) packages for R. 
Numbers below the post-stratification label show the structure of the stratification: for example, without 
any post-stratification the experiment had four blocks, each with four treated and four control cities. 
The matching on absolute distance on the propensity score with a propensity caliper penalty produced 
sixteen pairs of treated and control cities (1:1(16)). The match on absolute distance on baseline turnout 
produced one set with two treated and one control (2:1(1»), thirteen paired sets (1:1(13), and one set 
with one treated and two controls (I:2(r». Because no observation could be excluded, calipers implied 
penalties for the matching algorithm rather than excluding observations from the matching (Rosenbaum 
2OIO, ch. 8). 

is known ... that 'exact' second-order prop­
erties of analysis of covariance for precision 
improvement do not follow from random­
ization theory" (547). In this section, I pro­
vide an overview of a randomization-based 
method for covariance adjustment that can 
use normal approximations in the same way 

as those used for balance assessment and 
placebo tests. This method avoids most of 
the criticisms by Freedman (2008a, 2008b, 
2008c), and thus suggests itself as useful in 
circumstances where the linear model as an 
approximation may cause concern or perhaps 
as a check on such approximations. 
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Table 32.3: One-by-One Balance Tests Adjusted for Covariates, by 
Post-Stratification in the Blocked Thirty-Two-City Study 

Post Hoc Full Matching on: 

Blocks Baseline Turnout Propensity Score 

x dstrat• P dstrat• p dstrat• p 

Baseline outcome -1.2 .2 -1.2 ·3 -1.2 ·3 
Percent black -14·7 .0 -I4·7 .0 -14·7 .0 
Median HH income 15·7 .0 15.8 .0 15·7 .0 
Number of candidates -2·9 . I -2.6 ·3 -2·9 ·3 

Notes: Two-sided p values assess evidence against the null of no effects. An omnibus balance test casts 
doubt on the null hypothesis of balance on linear combinations of these covariates adjusted for blocks, 
and two kinds of post hoc full matching within blocks at p = .00003, .003, and .004. Strata adjusted 
mean differences (dst",a) are generalizations of Equation (I) developed in Hansen and Bowers (2008) and 
implemented in the Rltools package for R (Bowers et al. 2009). Statistical inference (p values) is ran­
domization based, but uses large-sample normal approximations for convenience. Post hoc stratification 
results from optimal, full matching (Hansen 2004) on either absolute distance on baseline turnout or 
absolute distance on a propensity score with propensity caliper penalty shown in Figure 32.3. 

First, though, let us get clear on what it 
means to "adjust for" random imbalance on a 
covariate. 

What Does It Mean to Say That an 
Estimate has been "Adjusted" for the 
"Covariance" of Other Variables? 

Let us look first at how covariance adjust­
ment might work in the absence of blocking 
by looking only at the first block of eight units 
in the thirty-two-city dataset. Figure 32-4 
is inspired by similar figures in Cox (1958, 
ch. 4) with dark gray showing treated units 
and black showing control units. The unad­
justed difference of means is 6.6 (the verti­
cal distance between the open squares that 
are not vertically aligned on the gray vertical 
line). The thick diagonal lines are the predic­
tions from a linear regression of the outcome 
on an indicator of treatment and baseline out­
come. The adjusted difference of means is 
the vertical difference between the regres­
sion lines, here, five. If there had been no 
relationship between baseline outcomes and 
post-treatment outcomes, the regression lines 
would have been flat and the vertical distances 
between those lines would have been the same 
as the unadjusted difference of means (the 
thin dark gray and black horizontal dashed 

lines). As ought to be clear here, parallel 
effects is a required assumption for covariance 
adjustment to be meaningful. In this case, a 
regression allowing different slopes and inter­
cepts between the treatment groups shows 
the treatment slope of 0.25 and the control 
group slope of 0.23; thus, the assumption is 
warranted. 

What about with blocked data? Figure 
32.5 shows the covariance adjustment for 
three different covariates: r) baseline out­
comes (on the left), 2) percent black (in the 
Iniddle), and 3) median household income (in 
$I,OOOS, on the right). In each case, the data 
are aligned within each block by subtracting 
the block mean from the observed outcome 
(i.e., block centered). A linear regression of 
the block mean centered outcome on the 
block mean centered covariate plus the treat­
ment indicator is equivalent to a linear regres­
sion of the observed outcome on the covariate 
plus treatment indicator plus indicator vari­
ables recording membership in blocks (i.e., 
"fixed effects" for blocks). 

In the leftmost plot, we see that adjust­
ment for baseline outcomes in addition to 
the blocking structure does little to change 
the treatment effect. In fact, these blocks 
were chosen with reference to baseline out­
comes; thus, adjusting for blocks is roughly 
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Figure 32+ Covariance Adjustment in a Simple 
Random Experiment 
Notes: Dark gray and black circles show treated 
and control units, respectively. The unadjusted 
difference of means is 6.6. The thick diagonal 
lines are Yi = ~o + ~, Zi + ~'Yi,'-I with Zi = 
{O:I} and the adjusted avera~e treatment effect is 
(YilZj = I,Y;,'-I = 1,,) - (YilZi = O,Yi,'-1 = 
1,')=5, 

equivalent to adjusting for baseline outcomes 
(only it does not require what is clearly a dubi­
ous parallel lines assumption). If the parallel 
lines assumption held in this case, however, 
then we might talk meaningfully about an 
adjusted effect. The average treatment effect 
in the first block is 6.6, but the treated units 
were more likely to participate, on average, 
than the control units even at baseline (a mean 
difference of 4-1). Some of the 6.6 points 
of turnout may well be due to baseline dif­
ferences (no more than 4. I, we assume, and 
probably less so, because it would only mat­
ter to the extent that baseline turnout is also 
related by chance in a given sample to treat­
ment assignment). In this case, the block­
specific relationship between baseline out­
comes and treatment assignment is vanish­
ingly small (difference of means is 1.9), so 
only about two points of the average treat­
ment effect is due to the baseline treatment 
effect (where "due to" is in a very specific lin­
ear smoothed conditional means sense). The 
adjusted effect is actually closer to 5 than 4.6 
because the intuitions provided here with dif-

ferences of means are not identical to what 
is happening with an analysis of covariance 
(although they are close and provide helpful 
intuition in this case). 

The middle and'right-hand plots show two 
instances in which the intuitions using dif­
ferences of means become more difficult to 
believe. In strata I, 2, and 4, every control unit 
has a higher percent black than every treated 
unit. The unadjusted average treatment effect 
is 1.8, but after adjustment for percent black 
the effect is 1.2. The middle plot, however, 
shows that the assumption of parallel effects is 
hard to sustain and that there is little overlap 
in the distributions of percent black between 
the treatment and control groups. In this case, 
however, the adjustment makes little differ­
ence in the qualitative interpretation of the 
treatment effect. 

The right-hand figure is a more extreme 
case of the middle figure. This time there is 
no overlap at all between the distributions 
of median income between the controls (in 
black, and all on the left side of the plot) and 
the treated units (in dark gray, and all on the 
r!ght side of the plot). The adjustment causes 
the treatment effect to change sign: from I.S 
to - 2. I percentage points of turnout. Is - 2. I 

a better estimate of the treatment effect than 
loS? Clearly, median income has astrongrela­
tionship with outcomes and also, via random 
imbalance, with treatment assignment (recall 
the test casting doubt on the null of balance 
in Table p.I). 

VVhat is the problem with covariance 
adjustment in this way? First, as noted pre­
viously, the assumption of parallel lines is not 
correct. Second, we begin to notice another 
problem not mentioned in textbooks such as 
Cox and Reid (2000) or Cox (1958) - ran­
dom assignment will, in large samples, ensure 
balance in the distributions of covariates but 
will not ensure such balance in small sam­
ples. This means that the distributions of the 
covariates, in theory, ought to be quite similar 
between the two groups. However, the the­
ory does not exclude the possibility of ran­
dom imbalance on one of many covariates, 
and it is well known that random imbalance 
can and does appear in practice. Adjustments 
for such imbalance can be done in such a 
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way that adjusted mean differences are still 
meaningful representations of the treatment 
effect (as shown by the adjustment for base­
line outcomes in the left plot of Figure 32.5). 
But, as the distributions of covariates become 
more unbalanced, the covariance adjustment 
can mislead. It is hard to claim, based on 
these data, that adjusting for median house­
hold income is a meaningful operation - one 
just cannot imagine (in these data) finding 
groups of treated and control units with the 
same median household income.7 

Thus, we can see where some criticisms 
of covariance adjustment might easily come 
from: covariance adjustment done with multi­
ple regression without additional diagnostics 
poses a real problem for diagnosing whether 
the imbalance is so severe as to provide no 
"common support" in the distributions of 
the covariates. In such cases, one really can­
not "adjust for" the imbalance and must be 
resigned to the fact that treatment versus con­
trol comparisons, in the data, reflect some­
thing other than treatment assignment even 
if they would not in a larger sample or across 
repeated experiments. Of course, as sample 
size grows, given a finite set of covariates and 
a treatment with finite variance (i.e., a treat~ 
ment that only has a few values and does not 
gain values as sample size grows), we would 
expect the problem of common support to 
disappear in randomized studies. Luckily, in 
many studies, one can assess such problems 
before treatment is administered. 

Randomization Alone Can Justify 
Statistical Inference Covariance-Adjusted 
Quantities 

A predominant use for covariance adjustment 
is not to ameliorate random imbalance but to 
enhance statistical precision. To the extent 
that a covariate predicts outcomes, one may 
use it to reduce the noise in the outcome 
unrelated to treatment assignment and thus 
help make treatment effects manifest. Covari-

7 This problem also occurred in Figure 32.4, but was 
not mentioned in order not to detract from the ped­
agogical task of describing the mechanism of covari­
ance adjustment. 

ance adjustment (whether for precision or for 
random imbalance) means linear regression. 
In theory, counterfactual statistical inference 
using the linear regression model for covari­
ance adjustment estimator is biased (Freed­
man 2008a, 2008b, 2008c); however, in prac­
tice, it is often an excellent approximation 
(Green 2009; Schochet 2009). What should 
we do when we worry about the approxi­
mation: for example, when the experiment is 
small, there is great heterogeneity in effects 
and! or variance of effects across blocks, or 
great heterogeneity or discreteness in the out­
come (such that the central limit theorem 
takes longer to kick in than one would pre­
fer)? Rosenbaum (lOOza) presents a simple 
argument that builds on the basics of Fisher's 
randomization-based inference. Here, I pro­
vide some brief intuition to guide study of 
that paper. This method of randomization­
justified covariance adjustment does not rely 
on the linear model for statistical inference, 
but does "adjust" using the linear model. 

Say an outcome is measured with noise 
caused in part by covariates. When we ran­
domly assign treatment, we are attempting to 
isolate the part of the variation in the outcome 
due to the treatment from that due to other 
factors. Say we are still interested in the dif­
ference in mean outcomes between treatment 
and control groups as assigned. The standard 
deviations of those means may be large (mak­
ing the treatment effect hard to detect) or 
small (making the treatment effect more eas­
ily manifest). If part of the noise in the out­
come is due to covariates, then the residual 
from regressing the outcome on the covari­
ates represents a less noisy version of the 
outcome - the outcome without noise from 
linear relationships with covariates. This 
residual eib (for unit i in block b) is mea­
sured in units of the outcome (i.e., "percent 
turning out to vote" in our running fake 
data example). The potential outcomes to 
treatment and control for units i in blocks 
b, YTib and YCib, are fixed, and lib is ran­
dom by virtue of its relationship with ran­
dom assignment Z because lib = ZibYTib 

+ (I - Zib)YCib. A null hypothesis tells 
us what. function of li and Zj would 
recover YCi: that is, if the null hypothesis 
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is correct, then removing the effect (say, "ib) 
from the treated units fib, Z = I would tell us 
how the treated units would behave under 
control. Under a constant, additive model of 
effects, YTib = YCib + " and so Yib - 2ib" ib = 
YCib 8. Thus, considering our null hypothe­
sis for the sake of argument, Ho : "0 = rib, 

regressing (fib - 2ib" ib) on Xi is regressing 
a fixed quantity (i.e., YCib) on another fixed 
quantity, Xib, and so the residuals from that 
regression are a fixed quantity.9 One may 
substitute e for X in Equations (I) and (4). 
Fisher's style of inference begins with a test 
of a null hypothesis and inverts the hypothe­
sis for a confidence interval: thus, the method 
allows us to infer consistent estimates of the 
causal effect by testing a sequence of causal 
hypotheses "0' Loosely speaking, the point 
estimate is the causal effect hypothesized by 
the best-supported hypothesis tested. Io Note 

8 If this model is incorrect, then randomization-based 
inferences will be conservative, but the coverage of 
the confidence intervals will still be correct as noted 
independently by Gadbury (200 x) and Robins (2002, 
Section 2.X). Other substantively meaningful mod­
els of effects are available (Rosenbaum 200za, section 
6; 2002b, ch. 5; 2010, ch. 2). For example, as Rosen­
baum (2002C, 323) notes, if the treatment effect varies 
by a binary covariate x coding 0 for group I and 
I for group 2 (such that the parallel lines assump­
tion is incorrect), then we would specify the potential 
responses to control as fib - Zib(rx=,xib + Tx=o(I -
Xib) for treatment effects that differ by group. I use 
the constant additive effects model in this chapter to 
map most closely onto the causal quantities implied 
by the choice of a linear regression model for covari­
ance adjustment: indeed, for this very reason, I show 
how both styles of covariance adjustment can produce 
identical quantities in Figure 32.6. Interested readers' 
might find the discussion in Rosenbaum (2002C, sec­
tion 3-6) useful for thinking about the equivalence 
of estimating an average treatment effect and test­
ing a sequence of hypotheses about individual causal 
effects. 

9 For a single covariate x and a regression fit (Yib 

- Zib Tib) = /30 + f3,xib, eib = (Yib - ZWCib) - (/30 
+ /3,Xib). The residual is written e, not e, because 
the regression fit is not an estimate of an unknown 
quantity, but merely calculating a function of fixed 
features of the existing data. 

10 See discussion of the Hodges-Lehmann point esti­
mate in Rosenbaum (2002a; 2002b, ch. 2) for more 
formal discussion of randomization-justified point 
estimates of causal effects. In the context of a large, 
cluster randomized field experiment with binary 
outcomes and nonrandom noncompliance, Hansen 
and Bowers (2009) show how one may approxi­
mate the results of testing sequences of hypothe­
ses with simple calculations of means and asso-

that this is a method of hypothesis testing, 
not of estimation. It would be quite incor­
rect to interpret the difference of means of 
residuals as an estimate of a treatment effect 
because the residuals already have specific 
causal hypotheses built into them as just 
described. 

Figure 32.6 shows that the Rosenbaum 
style covariance adjustment in these data is 
well approximated by the direct regression­
style covariance adjustment in the unadjusted 
case or when the adjustment is made for 
baseline turnout and number of candidates -
and the version adjusted for baseline turnout 
and number of candidates Oust) excludes zero 
from its ninety-five percent confidence inter­
val. The two approaches differ when the dif­
ference of means is adjusted for the census 
variables. The most notable difference here 
is for median household income, where the 
direct adjustment method is based entirely on 
the linear extrapolation between the groups, 

., whereas the Rosenbaum approach correctly 
captures the sense in which there is no rea­
sonable way to adjust the treatment effect for 
this covariate. Because adjustment for percent 
black also requires much linear extrapolation, 
the randomization-based confidence interval 
again reflects the fact that the design itself 
has little information about what it means to 
adjust for this variable. 

The advantages of this style of covariance 
adjustment are I) that it sidesteps Freed­
man's critiques of covariance adjustment for 
experiments; I I 2) although we used large­
sample normal approximations to evaluate 

ciated randomization-based variances, including a 
method for randomization-based covariance adjust­
ment. Because the Hansen and Bowers method 
approximates the results of testing sequences of 
hypotheses with simple means and variances, their 
method requires an asymptotic justification. Their 
article and related reproduction materials (Bowers, 
Hansen, and Fredrickson 2008) also provide tools for 
assessing the asymptotic justification. 

II In particular, Freedman (2008b, 189) notes that the 
Fisher-style covariance adjustment is valid. "If Ti = 
Cj for all i (the "strict null hypothesis"), then fJ == 
o and adjustment will help - unless ctZ = 0, i.e., 
the remaining variation (in Cj ) is orthogonal to the 
covariate." Another method, elaborated in Hansen 
and Bowers (2009), also does not directly model the 
relationship between treatment and outcomes and so 
similarly avoids this critique. 
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Figure 32.6. Covariance Adjusted.Confidence Intervals for the Difference in Turnout between Treated and Control Cities in the Thirty-Two-CityTurnout 
Experiment Data 
Notes: "Regression" -style adjustment regressed turnout on treatment indicator, block indicators, and covariates and referred to the standard lid + t based 
reference distribution for confidence intervals. "Rosenbaum" -style adjustment regressed turnout on block indicators and covariates, and then used the residuals 
as the basis for tests of the null hypotheses implied by these confidence intervals. The reference distributions for the Rosenbaum-style are large-sample 
approximations to the randomization distribution implied by the design of the experiment using the RItools (Bowers et al. 2009) package for R. Thin lines 
show the ninety-five percent intervals. Thick lines show the sixty-six percent intervals. The randomization-based confidence intervals for outcomes after 
adjustment by functions including median household income are essentially infinite. 
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the differences of means here, neither dif­
ferences of means nor large-sample normal 
approximations are necessary (and the large­
sample approximations are checkable)I2; and 
3) unmodeled heteroskedasticity or incorrect 
functional form does not invalidate the statis­
tical inference based on this method as it does 
for the standard approach. For example, the 
parallel lines assumption is no longer relevant 
for this approach because the only job of the 
linear model is to reduce the variance in the 
outcome. Finally, this particular- data exam­
ple allows us to notice another side benefit 
of the statistical property of correct coverage: 
when there is no (or little) information avail­
able in the design, the randomization-based 
approach will not overstate the certainty of 
conclusions in the same way as the model­
based approach!3 

Best Practices for Regression-Based 
Adjustment 

Adjusted treatment effect estimates always 
invite suspicion of data snooping or mod­
eling artifacts. None of the techciques dis-

12 Rosenbaum (200za) focuses on nonnal approxima­
tions to the Wilcox rank sum statistic as his pre­
ferred summary of treatment effects (and the nonnal 
approximations there are not necessary either, but 
merely convenient and often correct in large enough 
samples with continuous outcomes). 

13 The disadvantages of this mode are not on display 
here (although they will be obvious to those who 
use the code contained in this chapter for their own 
work). First, remember that this approach produces 
confidence intervals by testing sequences of hypo the­
ses. It does not "estimate" causal effects as would a 
standard regression estimator, but rather assesses the 
plausibility of causal effects using tests. Of course, 
such assessments of plausibility are also implicit in 
confidence intervals for standard regression estima­
tors. However, the mechanics of the two methods 
of covariance adjustment are quite different. The 
randomization-based approach as implemented here 
builds a confidence interval by direct inversion of 
hypothesis tests: in this case, we tested hypotheses 
about the treatment effect ftom To = -20 to To = 
20 by 0.1. This can be computationally burdensome 
if the number of hypotheses to test is large or if we 
eschew large-sample approximations. Second, we did 
not work to justify our choice of mean difference 
(rather than rank or other summary of observed out­
comes and treatment assignment). The standard lin­
ear regression estimator requires attention to mean 
differences as the quantity of interest, whereas any 
test statistic may be used in the randomization-based 
method of adjustment shown here. 

cussed here entirely prevents such criticism. 
Of course, the easy way to avoid such crit­
icism is to announce in advance what kinds 
of random imbalance are most worrisome 
and determine a plan for adjustment (includ­
ing a plan for assessing the assumptions of 
the adjustment method chosen). Covariance 
adjustment using the standard linear regres­
sion model requires that one believe the 
assumptions of that model. For example, this 
model as implemented in most statistical soft­
ware requires a correct model of the relation­
ship between outcomes and covariates among 
treatment and control units (i.e., a correct. 
functional form), that the heteroskedasticity 
induced by the experimental manipulation is 
slight, and that the sample size is large enough 
to overcome the problems highlighted by 
Freedman (2oo8a, 2oo8b, 2Oo8c). As with any 
use of linear regression, one may assess many 
of these assumptions. If one or more of these 
assumptions appear tenuous, however, then 
this chapter shows that one may still use the 
linear model for adjustment, but do so in a 
way that avoids the need to make such com­
mitments. Readers interested in the Rosen­
baum (200za) style of covariance adjustment 
should closely study that paper. The code 
contained in the reproduction archive for this 
chapter may also help advance understanding 
of that method. 

5. The More You Know, the More 
You Know 

A randomized study that allows "the phe­
nomenon under test to manifest itself" pro­
vides particularly clear information and thus 
enhances theory assessment, theory cre­
ation, and policy implementation. Thus, 
researchers should attend to those elements 
of the design and analysis that would increase 
the precision of their results. This chapter 
points to only a small part of the enormous 
body of methodological work on the design 
of experiments. 

Random assignment has three main sci­
entific aims: I) it is designed to bal­
ance distributions of covariates (observed 
and unobserved) such that, across repeated 
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randomizations, assignment and covariates 
should be independent; 2) it is designed to 
allow assessment of the uncertainties of esti­
mated treatment effects without requiring 
populations or models of outcomes (or lin­
earity assumptions); and 3) it is a method of 
manipulating putatively causal variables in a 
way that is impersonal and thus enhances the 
credibility of causal claims. Political scientists 
have recently become excited about experi­
ments primarily for the first and third aims, 
but they have ignored the second aim. This 
chapter discusses some of the benefits (and 
pitfalls) of the use of covariates in random­
ized experiments while maintaining a focus 
on randomization as the basis for inference. 

Although randomization allows statisti­
cal inference in experiments to match the 
causal inference, covariate imbalance can and 
does occur in experiments. Balance tests are 
designed to detect worrisome imbalances. 
One ought to worry about random imbal­
ances when they are I) large enough (and rele­
vant enough to the outcome) that they should 
make large changes in estimates of treatment 
effects, and 2) large relative to their baseline 
values such that interpretation of the treat­
ment effect could be confused. 

Small studies provide little information to 
help detect either treatment effects or imbal­
ance. The null randomization distribution 
for a balance test in a small study ought to 
have larger variance than said distribution 
in a large study. The same observ~d imbal­
ance will cast more doubt on the null ofbal­
ance in a large study than it will in a small 
study: the observed value will be farther into 
the tail of the distribution characterizing the 
hypothesis for the large study than it will 
in the small study. The same relationship 
between small and large studies holds when 
the test focuses on the treatment effect itself. 
Thus, a p value larger than some acceptance 
threshold for the null hypothesis of balance 
tells us that the imbalance is not big enough 
to cause detectable changes in assessments 
of treatment effects. A p value smaller than 
some acceptance threshold tells us that the 
imbalance is big enough to cause detectable 
changes when we gauge the effects of treat­
ment. 

Given random imbalance, what should one 
do? Adjustment can help, but adjustment can 
also hurt. This chapter showed (using a fake 
dataset built to follow a real dataset) a case in 
which adjustment can help and seems mean­
ingful and a case in which adjustment does 
not seem meaningful, as well as an inter­
mediate case. One point to take away from 
these demonstrations is that some imbal­
ance can be so severe that real adjustment 
is impossible. Just as is the case in observa­
tional studies, merely using a linear model 
without inspecting the data can easily lead 
an experimenter to mislead him- or herself -
and problems could multiply when more than 
one covariate is adjusted for at a time. Rosen­
baum's (20oza) proposal for a randomization­
based use of linear regression models is 
attractive in that covariance-adjusted con­
fidence intervals for the treatment effect 
do not depend on a correct functional 
form for the regression model. In this paper, 
all of the adjustment for median house­
hold income depended on a functional form 
assumption, so the randomization-based con­
fidence interval was essentially infinite (sig­
naling that the design of the study had 
no information available for such adjust­
ment) while the model-based regression con­
fidence interval, although much wider than 
the unadjusted interval, was bounded. Mod­
ern matching techniques may also help with 
this problem (Keele et al. 2008). In this chap­
ter, precision was not enhanced by match­
ing within blocks, but matchings including 
median household income did not radically 
change confidence intervals for the treat­
ment effect, and balance tests before and after 
matching readily indicated that the matchings 
did not balance median household income. 

This chapter did not engage with some 
of the other circumstances in which covari­
ate information is important for random­
ized studies. In particular, if outcomes are 
missing, then prognostic covariates become 
ever more important in experimental stud­
ies given their ability to help analysts build 
models of missingness and models of out-

. comes (Barnard et al. 2003; Horiuchi, !mai, 
and Taniguchi 2007). Thus, I understate 
the value of collecting more information 
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about one's units. The trade-offs between 
collecting more information about units ver­
sus including more units in a study ought to be 
understood from the perspectives long artic­
ulated in ,the many textbooks on experimental 
design: simple random assignment of units to 
two treatments (treatment vs. control) can be 
a particularly inefficient research design. 
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